
BigCAB: Distributed Hot Spot Analysis over Big
Spatio-temporal Data using Apache Spark (GIS Cup)

Panagiotis Nikitopoulos
Department of Digital Systems

University of Piraeus
18534, Piraeus, Greece

nikp@unipi.gr

Aris-Iakovos
Paraskevopoulos

Department of Digital Systems
University of Piraeus

18534, Piraeus, Greece
arisparaskevop@gmail.com

Christos Doulkeridis
Department of Digital Systems

University of Piraeus
18534, Piraeus, Greece

cdoulk@unipi.gr

Nikos Pelekis
Department of Statistics and

Ins. Science
University of Piraeus

18534, Piraeus, Greece
npelekis@unipi.gr

Yannis Theodoridis
Department of Informatics

University of Piraeus
18534, Piraeus, Greece

ytheod@unipi.gr

ABSTRACT
Hot spot analysis is the problem of identifying statistically
significant spatial clusters from an underlying data set. In
this paper, we target the problem of hot spot analysis of mas-
sive spatio-temporal data, which raises the need for a parallel
and scalable solution that operates on data distributed over
a set of nodes. We propose an algorithm, called BigCAB,
implemented in Spark, that solves the problem in a parallel
and scalable way. Our experiments on real data represent-
ing taxi trips demonstrate both the efficiency as well as the
nice scaling properties of our algorithm.

CCS Concepts
•Computing methodologies → MapReduce algo-
rithms; •Information systems → Geographic infor-
mation systems; Parallel and distributed DBMSs;

Keywords
Hot spot analysis; parallel and distributed processing; spatio-
temporal data; MapReduce; Apache Spark

1. INTRODUCTION
Massive amounts of spatio-temporal data are produced on

a daily basis, including mobile objects’ trajectories, tweets
by mobile Twitter users, check-ins in Foursquare, etc. Ana-
lyzing this wealth of spatio-temporal data has the potential
to discover hidden patterns or result in non-trivial insights.
In this context, a useful data analysis task is Hot Spot Analy-
sis, which is the process of identifying statistically significant

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.3004065

clusters. The problem is well-studied in spatial databases
and medium-sized data sets. However, to the best of our
knowledge, there is a lack of parallel processing solutions
that operate on distributed spatio-temporal data in an effi-
cient and scalable way.

Motivated by this shortcoming, in this paper, we study
the problem of identifying statistically significant clusters
over massive spatio-temporal data, which is stored in a dis-
tributed way. To address the GIS Cup 2016 Challenge re-
lated with the immense volume of underlying data, we design
and develop a scalable solution in a parallel data processing
framework, namely Apache Spark, which is currently the
most widely established framework for batch processing and
analytics. As such, the main contribution of our work is
the design and implementation of one of the first parallel
algorithms that solves the problem of hot spot analysis in a
scalable way.

The remainder of this paper is structured as follows: Sec-
tion 2 formulates the problem under study and provides de-
tails on the GIS Cup 2016 Challenge. Section 3 presents the
proposed algorithm and its implementation details. Then, in
Section 4, we present some experimental results and in Sec-
tion 5 we briefly describe recent works in hot spot analysis.
Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION
Consider a spatio-temporal data set D that consists of

data points p ∈ D described by 2D spatial coordinates (p.x
and p.y), a timestamp (p.t), as well as any other information
related to the spatio-temporal position of p. A data point
p also contains an attribute value (p.v) that is application-
specific and denotes a numerical quantity associated with
each data point, which is going to be used for data analysis
purposes. Furthermore, consider a spatio-temporal parti-
tioning P which partitions the 3D spatio-temporal domain
into n 3D cells {c1, . . . , cn} ∈ P. There is a one-to-one
mapping between a data point p and a cell ci, which is de-
termined based on p being enclosed in ci. We also define
the attribute value xi of the i-th cell as: xi =

∑
p∈ci p.v.

Table 1 provides an overview of the notation.

Symbol Description

D Spatio-temporal data set
p ∈ D Spatio-temporal data point (p.x, p.y, p.t)
p.v Attribute value of data point p
P 3D space partitioning P = {c1, . . . , cn}
ci The i-th cell of partitioning P, (1 ≤ i ≤ n)
xi Attribute value of cell ci ∈ P
n The number of cells in P
G∗i The Getis-Ord statistic for cell ci
N (ci) The direct neighboring cells of cell ci
top-k Requested number of most significant cells

Table 1: Overview of symbols.

The problem of hot spot analysis addressed in this work
is to identify statistically significant spatio-temporal areas
(i.e., cells of P), where the significance of a cell ci is a func-
tion of the cell’s attribute value xi, but also of other neigh-
boring cells’ attribute values. A commonly used function
(statistic) is the Getis-Ord statistic G∗i , defined as [5]:

G∗i =

∑n
j=1 wi,jxj −X

∑n
j=1 wi,j

S

√
[n

∑n
j=1 w2

i,j−(
∑n

j=1 wi,j)2]

n−1

(1)

where xj is the attribute value for cell j, wi,j is the spatial
weight between cell i and j, n is equal to the total number
of cells, and:

X =

∑n
j=1 xj

n
(2)

S =

√∑n
j=1 x

2
j

n
− (X)2 (3)

Based on this, the problem of hot spot analysis is to iden-
tify the k most statistically significant cells according to the
Getis-Ord statistic, and can be formally stated as follows.

Problem 1. (Hot spot analysis) Given a spatio-temporal
data set D and a space partitioning P, find the top-k cells
TOPK = {c1, . . . , ck} ∈ P based on the Getis-Ord statistic
G∗i , such that: G∗i ≥ G∗j , ∀ci ∈ TOPK, cj ∈ P − TOPK.

2.1 The GIS Cup 2016 Challenge
In this paper, we study an instance of Problem 1 based

on the GIS Cup 2016 Challenge1, where the aim is to per-
form hot spot analysis over massive spatio-temporal data
by proposing a parallel and scalable solution. Thus, we turn
our attention to large-scale data sets that exceed the stor-
age and processing capabilities of a single centralized node.
Therefore, we assume that the data set D is stored dis-
tributed in multiple nodes, horizontally partitioned, without
any more specific assumptions about the exact partitioning
mechanism. Put differently, a node stores a subset Di of
the records of D, and it holds that Di

⋂
Dj = ∅ (for i 6= j),

and
⋃

Di = D. Hence, in this paper, we study a distributed
version of Problem 1.

Moreover, some simplifying assumptions were made, as
indicated by the Challenge description. First, for the com-
putation of the Getis-Ord statistic of a cell ci, only the direct
1http://sigspatial2016.sigspatial.org/giscup2016/

neighboring cells are considered, instead of all n cells of P.
We use N (ci) to denote this set of neighboring cells of ci,
and |N (ci)| denotes the number of such neighboring cells2.
Second, to simplify the computation of Getis-Ord statistic,
the weight wi,j of each neighbor cell cj to cell ci is presumed
to be equal to one. Hence, we obtain the following simplified
formula for the Getis-Ord statistic:

G∗i =

∑
j∈N (ci)

xj −X · |N (ci)|

S ·
√

n·|N (ci)|−|N (ci)|2
n−1

(4)

3. BIGCAB ALGORITHM
In this chapter, we present our solution for distributed hot

spot analysis over big spatio-temporal data. The proposed
algorithm, called BigCAB, is designed to be efficiently exe-
cuted over a set of nodes in parallel and utilizes the MapRe-
duce framework of Apache Spark. The input data set D is
stored in a distributed file system, in particular HDFS.

3.1 Overview
Intuitively, our solution consists of three main steps. As

the input data set D is stored distributed in different nodes,
the first step is to re-partition this data based on the cell ci ∈
P where each data point belongs to. Thus, for any accessed
data point p, we project it to the cell ci that encloses p.
We discard any other information regarding p, apart from
the attribute value p.v. This grouping of data points per
cell, allows us to compute the attribute value of each cell,
i.e., xi =

∑
∀p∈ci p.v. Subsequently, in the second step,

the attribute value xi of each cell ci is aggregated with the
attribute values of the neighboring cells N (ci). In the last
step, we compute the statistic of each cell ci, by utilizing the
simplified Getis-Ord formula of Equation 4.

The above description explains the rationale of our ap-
proach. In the following, we describe the implementation of
our solution (BigCAB) in Spark, along with the necessary
technical details.

3.2 Spark Implementation
Apache Spark is a popular framework that utilizes MapRe-

duce for efficiently executing parallel tasks. It is consid-
ered as one of the best solutions for batch processing tasks,
largely overcoming some of the limitations of Hadoop [1].
Hence, it is appropriate for implementing and executing the
BigCAB algorithm. Spark uses the abstraction of resilient
distributed data set (RDD) [6], which is a distributed col-
lection of elements. Any work that has to be carried out in
Spark is expressed as RDD creation, RDD transformation,
or operation on RDDs.

Our implementation of BigCAB in Spark is depicted in
Algorithm 1. It consists of two MapReduce phases followed
by a top-k operation. Between the two MapReduce phases, a
for each clause is used to compute some statistical informa-
tion. Note that in the provided pseudocode, we use lambda
expressions syntax to eliminate verbosity.

In lines 2–4, the first flatMapToPair function reads the
input files from HDFS, and transforms data points p into
key-value pairs. Keys are simple integer variables, gener-
ated according to p’s spatio-temporal projection on the cells
2In the 3D space, a cell ci typically has |N (ci)| = 26 neigh-
boring cells, unless the cell is located at the space bound-
aries.

Algorithm 1 BigCAB algorithm

1: procedure BigCAB
2: gridRDD = filesOnHDFS.flatMapToPair(p =>
3: emit new pair(getCellId(p), p.v)
4:).reduceByKey(p1, p2 => emit p1.v + p2.v)
5: gridRDD.forEach(ci => update accumulators)
6: neighborRDD = gridRDD.flatMapToPair(ci =>
7: N (ci) = getDirectNeighborIds(ci)
8: for each j in N (ci) do
9: emit new pair(j, xi)

10: end for
11:).reduceByKey(x1, x2 => emit x1 + x2)
12: scoresRDD=neighborRDD.mapPartitionsToPair(ci=>
13: for each local ci in neighborRDD do
14: list.add(new pair(ci, G

∗
i))

15: sort list and keep only the top-k pairs
16: end for
17: emit list)
18: sort scoresRDD and return the top-k cells
19: end procedure

of P; i.e., for a data point p ∈ ci the key is the identifier i
of the corresponding cell ci. Values represent the respective
attribute value p.v of p. Notice that by using primitive key
types we improve BigCAB’s efficiency and decrease commu-
nication overhead between the nodes in the cluster. When
all data are loaded and transformed into key-value pairs,
they are aggregated by a reduceByKey function, whose task
is to compute the sum of attribute values xi for each cell ci.

Then, in line 5, a forEach function is used to compute the
statistical values of Equations 2 and 3 over the cells of P. To
this end, we create two accumulators that will provide the
sum (

∑n
i=1 xi) and squared sum (

∑n
i=1 x

2
i) of the attribute

values xi of cells ci respectively. Notice that according to
the documentation of Apache Spark, accumulators should
not be modified by a map function, as this may lead to
unexpected behavior.

The next step (lines 6–11) is to compute the neighbor ag-
gregated attribute values (

∑
j∈N (ci)

xj), as mentioned in the
previous section. This process is performed by the second
MapReduce phase. We create |N (ci)| number of copies for
each cell ci of P, where each copy’s key is altered to match
the key of a direct neighboring cell. These copies are ag-
gregated by a reduceByKey function, where the sum of the
attribute values of each cell’s direct neighbors is computed.

In order to compute the G∗i scores, we apply the simpli-
fied formula of Equation 4 to each point produced by the
previous step (lines 12–17). This task is accomplished by
a mapPartitionsToPair function which processes the local
cells of each processing node. Since cells are assigned to
nodes based on the available hardware resources, it suffices
for each node to report only its local top-k cells based on G∗i
score. Thus, this function also performs a top-k query on
the locally computed cells. As such, each node emits to the
coordinator node only its k most statistically significant cells
by score. Then, the coordinator produces the final result by
reporting only the k cells with highest scores (line 18).

4. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of BigCAB,

which is implemented in Java, using Apache Spark.

Parameter Values

Input size (GB) 6, 12 24
No. of cells in P (n) 12K, 100M, 800M

Table 2: Experimental parameters and values.

4.1 Experimental Setup
Platform. We deployed our algorithm in an in-house

CDH cluster consisting of sixteen (16) server nodes. Each of
the nodes d1-d8 has 32GB of RAM, 2 disks for HDFS (5TB
in total) and 2 CPUs with a total of 8 cores running at 2.6
GHz. The nodes d9-d12 have 128GB of RAM, 4 disks for
HDFS (8TB in total) and 2 CPUs with a total of 12 cores
(24 hyperthreads) running at 2.6 GHz. Finally, each of the
nodes d13-d16 is equipped 128GB RAM, 4 disks for HDFS
(8TB in total), and 2 CPUs with a total of 16 cores run-
ning at 2.6GHz. Each of the servers in the cluster function
as DataNode and NodeManager, while one of them in ad-
dition functions as NameNode and ResourceManager. Each
node runs Ubuntu 12.04. We use the CDH 5.4.8.1 version
of Cloudera and Oracle Java 1.7. We configured HDFS with
128MB block size and used a default replication factor of 3.

Data Set. Our algorithm was tested against a real data
set. By following the guidelines of the GIS Cup 2016 Chal-
lenge, we used a very large collection of spatio-temporal ob-
servational data; the New York City Taxi and Limousine
Commission Yellow Cab trip data3. This data set consists
of over one billion records representing all Yellow Cab taxi
trips in New York City between January 2009 and June 2016.
Each record in the data set contains key information such as
pickup and dropoff date, time, and location (latitude, longi-
tude), trip distance, passenger count, and fare amount. We
use passenger count as attribute value of a record.

In this study, we used a subset of the available data, corre-
sponding to the taxi trips of the year 2015. This data is split
to 12 individual files (one for each month), making a total
size of approximately 24GB. Furthermore, the source data
were clipped to an envelope (bounding box), encompassing
the five New York City boroughs, in order to remove some of
the noise or erroneous values in the data set. This envelope
was defined according to the following coordinates: latitude
40.5N - 40.9N, longitude 73.7W - 74.25W.

Grid Characteristics. A 3D grid (P) was used to ag-
gregate the spatio-temporal data to cells. The properties of
the grid, i.e., cell size in each dimension, can be specified at
runtime. In this study, we use a default cell size of 0.001 de-
grees latitude and longitude, and roughly 2.5 hours of time.
This results to approximately 800 million cells (n = 800M)
for our default setting.

Query. The goal of the GIS Cup 2016 Challenge was to
identify the fifty (k=50) most statistically significant dropoff
locations (cells of the grid) by passenger count in both time
and space using the Getis-Ord statistic.

Evaluation Methodology. In order to demonstrate the
efficiency and scalability of BigCAB, we conducted a set of
experiments. We monitored the execution time needed for
each experiment to complete, while varying the size of input
data and the size of grid cells. The parameter values are
shown in Table 2, with default values in bold.

3http://www.nyc.gov/html/tlc/html/about/trip record
data.shtml

 0

 50

 100

 150

 200

6 12 24

T
im

e
 (

s
e

c
)

Data set size (GB)

(a) Input size

 0

 50

 100

 150

 200

12K 100M 800M

T
im

e
 (

s
e

c
)

No. of Cells in P

(b) Cells in P

Figure 1: Performance of BigCAB.

4.2 Experimental Results
Varying data set size. We evaluated the execution time

of BigCAB for different sizes of the data set to test its scal-
ability with input size.

Figure 1(a) depicts the results of this experiment. Obvi-
ously, having to process larger input sizes results in higher
execution time. More specifically, an input size of 6GB re-
quires 77 seconds to be processed, while the 24GB input size
requires 200 seconds. Put differently, when we quadruple the
input size, the execution time does not increase four times,
but less. These results indicate that BigCAB has some nice
scaling properties.

Varying grid cell size. In the next experiment, we as-
sessed the sensitivity of BigCAB for different cell sizes of the
grid P. By using a larger cell size, the results are aggregated
into larger groups of time and space, providing the user a
less granulated information.

Figure 1(b) shows that having a larger number of cells
results in higher execution time, due to increased process-
ing complexity in some stages of BigCAB. This is expected
since more cells result in more key-value pairs being cre-
ated in both MapReduce phases. Thus larger RDDs need
to be processed, and also the score computation phase is
more expensive. By requesting results of smaller granular-
ity, BigCAB achieves better performance results. However,
this may have a negative impact on the accuracy of hot spot
discovery.

5. RELATED WORK
Hot spot analysis is a special case of spatio-temporal data

analysis and mining, which has been the object of many
research efforts lately. Recent works on hot spot analysis
for spatio-temporal data include [2, 4].

The study in [4] proposes a different way to visualize and
analyze spatio-temporal data. The aim is to identify areas of
high event density, by using multivariate kernel density es-
timation. Different kernels in spatial and temporal domains
can be used. After such hot spots have been identified, a
spatio-temporal graph can be formed to represent topologi-
cal relations between hot spots.

In [2], a spatio-temporal graph is analyzed in order to
find anomalies on people’s regular travel patterns. These
interesting phenomena are called black holes and volcanos,
represented as subgraphs with overall inflow traffic greater
than the overall outflow by a threshold and vice-versa. The
detection of frequent patterns and relations between black
holes and volcanos lead to the discovery of human mobility
patterns.

In [3], hot spot analysis is used for studying mobile traf-

fic. The aim is to identify locations where the density of
data volumes transmitted is high, based on specific values
of thresholds. The results of the analysis are then used to
detect the distribution of mobile data traffic hot spots and
to propose a meaningful cell deployment strategy.

6. CONCLUSIONS
In this paper, we proposed a parallel and distributed so-

lution for hot spot analysis over big spatio-temporal data.
The problem is challenging due to the immense volume of
input data, which makes centralized solutions inefficient or
impractical. We presented the design of a parallel algorithm,
called BigCAB, which is implemented in Apache Spark. Our
experimental study on real data demonstrates the scalabil-
ity and the efficiency of BigCAB. In our future work, we
intend to apply our approach to other domains, such as the
maritime or aviation domains, in order to discover hot spot
areas for vessels and aircrafts respectively.

7. ACKNOWLEDGMENTS
This work has been partly supported by the University of

Piraeus Research Center; also by project datACRON, which
has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 687591.

8. REFERENCES
[1] C. Doulkeridis and K. Nørv̊ag. A survey of large-scale

analytical query processing in mapreduce. VLDB J.,
23(3):355–380, 2014.

[2] L. Hong, Y. Zheng, D. Yung, J. Shang, and L. Zou.
Detecting urban black holes based on human mobility
data. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, GIS ’15, pages 35:1–35:10, New
York, NY, USA, 2015. ACM.

[3] H. Klessig, V. Suryaprakash, O. Blume, A. J. Fehske,
and G. Fettweis. A framework enabling spatial analysis
of mobile traffic hot spots. IEEE Wireless Commun.
Letters, 3(5):537–540, 2014.

[4] J. Lukasczyk, R. Maciejewski, C. Garth, and H. Hagen.
Understanding hotspots: A topological visual analytics
approach. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, GIS ’15, pages 36:1–36:10, New
York, NY, USA, 2015. ACM.

[5] J. K. Ord and A. Getis. Local spatial autocorrelation
statistics: Distributional issues and an application.
Geographical Analysis, 27(4):286–306, October 1995.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012, pages
15–28, 2012.

