
Grant Agreement No: 687591

30/12/16

Big Data Analytics for Time Critical Mobility Forecasting

D1.2 Architecture Speci�cation

Deliverable Form

Project Reference No. H2020-ICT-2015 687591

Deliverable No. 1.2

Relevant Work Package: WP 1

Nature: R

Dissemination Level: PU

Document version: 2.1

Due Date: 31/12/2016

Date of latest revision: 30/12/2016

Completion Date: 30/12/2016

Lead partner: UPRC

Authors:

Christos Doulkeridis (UPRC), Apostolos Glenis (UPRC), Giorgos San-
tipantakis (UPRC), Akrivi Vlachou (UPRC), George Vouros (UPRC),
Michael Mock (FRHF), Nikos Pelekis (UPRC), Kostas Patroumpas
(UPRC), Elias Alevizos (NCSR'D), Georg Fuchs (FRHF)

Reviewers:

Nikos Pelekis (UPRC), Elias Alevizos (NCSR'D), Alexander Artikis
(NCSR'D), Georg Fuchs (FRHF), Christophe Claramunt (NARI), Cyril
Ray (NARI), Anne-Laure Jousselme (CMRE), Elena Camossi (CMRE),
Ernie Batty (IMIS), David Scarlatti (BRTE), Jose-Manuel Cordero
(CRIDA)

Document description:
This deliverable speci�es the integrated system architecture for dat-
Acron.

Document location: WP1/Deliverables/D1.2/Final



HISTORY OF CHANGES

Version Date Changes Author Remarks

0.1 26/9/2016
First version of ta-
ble of contents

C. Doulkeridis

0.2 15/10/2016
Added overview of
technological solu-
tions

A. Glenis

0.3 15/11/2016
First version of ar-
chitecture

A. Glenis

0.4 28/11/2016
Re�ned version of
architecture

C. Doulkeridis

0.5 30/11/2016
Revised section on
technological solu-
tions

A. Glenis

1.0 01/12/2016

Added description
of components
and software
architecture

C. Doulkeridis
Version shared
with all partners

1.1 07/12/2016

Added feedback
from A. Artikis
and E. Alevizos
(WP3) and D.
Scarlatti (WP6)

C. Doulkeridis

1.2 09/12/2016
Added mapping of
architecture to re-
quirements

C. Doulkeridis

1.3 15/12/2016
Added feedback
from N. Pelekis
(WP2)

C. Doulkeridis

1.4 17/12/2016
Re�ned overview
of technological
solutions

A. Glenis

1.5 19/12/2016
Added feedback
from G. Fuchs
(WP4)

C. Doulkeridis

1.6 22/12/2016

Added feedback
from M. Mock
about in-situ
processing

C. Doulkeridis

2.0 23/12/2016
Near-�nal, homo-
geneous version

C. Doulkeridis
Version shared
with all partners



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

EXECUTIVE SUMMARY

This report comprises the second deliverable (D1.2) of datAcron work package 1 �System archi-
tecture and data management� with main objective to specify the architecture of datAcron, its
constituent components, and their interactions, in order to realize the requirements speci�ed in
deliverable D1.1.

The �rst part of this document provides a brief overview of technological solutions that
are relevant to the innovative Big Data algorithms and methods that are being developed in
datAcron. Its purpose is to narrow down the possible frameworks that can be adopted by
datAcron, detect their advantages and disadvantages, and ultimately provide a guide for selecting
the most appropriate technological solution for particular parts of the datAcron architecture.

The second part of this document describes the proposed datAcron system architecture, the
main datAcron components, their interactions, as well as the internals of each component, thereby
clarifying the roles and the speci�c operations performed in datAcron. In addition, a mapping is
provided between the requirements identi�ed in deliverable D1.1 and the datAcron architecture
proposed in this deliverable, aiming at justifying the choice of the individual components and
how the requirements are addressed by the architecture.

The �nal part of this document presents the current view of the datAcron software architec-
ture, in terms of high level software modules and their interconnections. This part is going to be
re�ned in the following months of the project's lifetime, and will eventually be documented in
deliverables D1.6 and D1.11 about Software Design. However, the usefulness of this part in the
present deliverable is to identify novel algorithmic solutions that will be developed in the context
of datAcron, as well as contributions in the areas of Big Data processing and analytics.



TABLE OF CONTENTS

HISTORY OF CHANGES

EXECUTIVE SUMMARY

TABLE OF CONTENTS

TERMS & ABBREVIATIONS

LIST OF FIGURES

LIST OF TABLES

1 Introduction 1
1.1 Purpose and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approach for the Work package and Relation to other Deliverables . . . . . . . . 1
1.3 Methodology and Structure of the Deliverable . . . . . . . . . . . . . . . . . . . . 2

2 Overview of Technological Solutions 3
2.1 Message Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Apache Kafka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 The Hadoop Distributed File System (HDFS) . . . . . . . . . . . . . . . . 4
2.2.2 Cassandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Apache Hbase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Pivotal GemFire and Apache Geode . . . . . . . . . . . . . . . . . . . . . 6

2.3 Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.1 Apache Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Stream/Real-time Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Apache Storm and Heron . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Spark Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.3 Apache Flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.4 Kafka Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Combining Batch with Real-time Processing . . . . . . . . . . . . . . . . . . . . . 10
2.5.1 Lambda Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5.2 Kappa Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Data Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.1 Avro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.2 Parquet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Recommendations for the datAcron Architecture . . . . . . . . . . . . . . . . . . 14
2.7.1 datAcron Data Management Architecture . . . . . . . . . . . . . . . . . . 14
2.7.2 Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.3 Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2.7.4 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.5 Data Serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The datAcron Integrated System Architecture 16
3.1 Synopses Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 In-situ Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Data Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Data Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 The Distributed Spatio-temporal RDF Store . . . . . . . . . . . . . . . . 24
3.3.3 Interconnections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Trajectory Detection and Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Location Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Local Model Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 Data Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Event Recognition and Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.2 Data Selection and Grouping . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.3 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.4 Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Mapping the datAcron Architecture to Requirements 32
4.1 Architectural Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Mapping datAcron Components to Requirements . . . . . . . . . . . . . . . . . . 33

4.2.1 Synopses Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 In-situ Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Data Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Trajectory Detection and Prediction . . . . . . . . . . . . . . . . . . . . . 35
4.2.5 Event Recognition and Forecasting . . . . . . . . . . . . . . . . . . . . . . 36
4.2.6 Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 The datAcron Software Architecture 37
5.1 Batch Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Processing Spatio-temporal RDF Data in Apache Spark . . . . . . . . . . 38
5.1.2 Distributed Storage of Spatio-temporal RDF Data . . . . . . . . . . . . . 38

5.2 Real-time Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.1 Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.2 Stream-based Communication . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Combining Batch with Real-time Processing . . . . . . . . . . . . . . . . . . . . . 40
5.4 Software Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

TERMS & ABBREVIATIONS

ADS-B Automatic Dependent Surveillance-Broadcast

AIS Automatic Identi�cation System

METAR Meteorological Terminal Air Report

NOAA National Oceanic and Atmospheric Administration

RDF Resource Description Framework

STAR Standard Terminal Arrival Route

SID Standard Instrument Departure



LIST OF FIGURES

1 The Lambda Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 The Kappa Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Major steps in analysis of Big Data. . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 The datAcron Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 The internal operation of the Synopses Generator component. . . . . . . . . . . . 19
6 The In-situ Processing components in the datAcron Architecture. . . . . . . . . . 21
7 The Data Integrator : The data �ow during the data transformation and inte-

gration process is depicted with main modules: (a) data connectors, (b) triple
generator, (c) integrator, and (d) triple encoder. . . . . . . . . . . . . . . . . . . 22

8 The Trajectory Detection and Prediction internal architecture. . . . . . . . . . . 26
9 The architecture of the Event Recognition and Forecasting component. . . . . . . 27
10 The Visual Analytics Loop supported by datAcron's VA component, adapted

from [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11 The Visual Analytics module architecture with its principal components to support

the VA loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
12 Batch processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
13 Real-time processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
14 The datAcron software stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



LIST OF TABLES

1 Comparison of the capabilities of streaming processing frameworks . . . . . . . . 10
2 Mapping between requirements and architecture. . . . . . . . . . . . . . . . . . . 34



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

1 Introduction

This document is the deliverable D1.2 �Architecture Speci�cation� of Task T1.2 of work package
1 �System Architecture and Data Management� of the datAcron project. It de�nes the datAcron
integrated system architecture, by capitalizing on the deliverable D1.1. �Requirements Analysis�
but also on the deliverables D5.2 �Maritime data preparation and curation� and D6.2 �Aviation
data preparation and curation�. The speci�ed architecture is subject to re�nements during the
course of the project, according to other deliverables of the individual work packages that are
going to be prepared after month M12 in the project.

1.1 Purpose and Scope

The Architecture Speci�cation aims at de�ning the overall architecture of the project, in terms
of main components, their interactions, but also the software modules that are going to imple-
ment the architecture. The envisioned architecture is a Big Data architecture, as it addresses
several aspects relevant to Big Data, such as: processing of multiple streaming data (Velocity),
handling vast volumes of archival data and incoming streaming data (Volume), and integrating
heterogeneous data sources in di�erent formats, representations, and modalities (Variety).

Deliverable D1.2 is submitted on month M12 of the project, in order to set the guidelines for
the next development steps in the project. Even though it is foreseen that individual compo-
nents may be developed in di�erent frameworks, in order to achieve optimized operation, their
interactions are speci�ed in this document, in order to ease the necessary software integration of
the prototype datAcron system.

1.2 Approach for the Work package and Relation to other Deliverables

D1.2 relies on the analysis of requirements speci�ed in deliverable D1.1. In this sense, it validates
the requirements and proposes concrete architectural components that constitute a comprehen-
sive architecture for the datAcron system. In addition, D1.2 exploits the outcome of the data
preparation reports for the maritime (D5.2) and aviation (D6.2) domains, which provide details
on input data sources for the datAcron system in terms of historical data sources and streaming
data sources.

It must be pointed out that D1.2 is prepared during the same time that deliverables D5.3
�Maritime experiments speci�cation� and D6.3 �Aviation experiments speci�cation� are prepared.
Both these deliverables aim at providing more detailed descriptions of the experimentation pro-
cess that is going to validate the research results of the project. As such, they connect to
this deliverable, and intermediate versions of D5.3 and D6.3 have been considered during the
preparation of the current deliverable.

1



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

1.3 Methodology and Structure of the Deliverable

Main inputs to the preparation of this document were both deliverable D1.1 as well as internal
reports specifying how speci�c use-case scenarios are expected to be supported in datAcron. In
terms of work methodology, the present deliverable builds upon the requirements identi�ed in
D1.1, and �translates� or �maps� these requirements to speci�c architectural components, whose
interactions support the use-case scenarios of datAcron.

The objective of the adopted work methodology is twofold: (a) to justify the architectural
decisions, and (b) to verify that all identi�ed requirements are addressed by the architecture.
Furthermore, the proposed architecture is in compliance with the research objectives of the
project, addressing diverse processing and analytics requirements (both batch and real-time
processing), and tackling with multiple aspects of Big Data. In this respect, it sets a solid
ground for developing innovative algorithmic solutions for Big Data processing and analysis in
the context of each individual part of the architecture.

To come up with an comprehensive architecture, the main rationale behind the production of
this report was to identify speci�c architectural components that are going to perform well-de�ned
operations at individual level, but also interact with each other in order to deliver optimized
analysis results, such as prediction and forecasting over Big Data, which is the core research
objective of datAcron. Going one step further, this report speci�es the internal modules and
organization of each component, in order to provide a coherent view of the processing and analysis
tasks at all levels, from data acquisition and cleaning, to data representation and processing, and
�nally to data analysis and result interpretation.

The remaining of this report is structured as follows:

� Section 2 overviews the state-of-the-art in terms of technological solutions that are relevant
for the datAcron architecture.

� Section 3 describes the architecture of datAcron in terms of main components, inputs and
outputs, as well as their interactions.

� Section 4 provides the mapping of the proposed architecture and its constituent compo-
nents to the requirements (stated in deliverable D1.1), thus validating the design of the
architecture.

� Section 5 describes the software architecture that will be realized in order to achieve the
research objectives of datAcron.

2



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2 Overview of Technological Solutions

In this section we provide a crisp overview of available technological solutions related to Big Data
management. The focus is on real-world, operational systems that are stable, reliable, have a
signi�cant user and developer base, and are being used in the implementation of novel Big Data
systems and algorithms, rather on research prototypes that are optimized for speci�c operations
only. In the context of datAcron, the technical challenges raised are due to di�erent aspects of
Big Data, and relate to the following areas:

� Stream-based interconnection for end-to-end real-time operations that rely on the aggrega-
tion of di�erent modules providing distinct functionalities (Section 2.1).

� Scalable, distributed and integrated storage of voluminous archival data (data-at-rest) and
new streaming data (data-in-motion) (Section 2.2).

� Batch processing functionality on top of the stored data to enable di�erent data analytics
on top of the stored data (Section 2.3).

� Stream processing for real-time operations, such as trajectory prediction and complex event
detection and forecasting (Section 2.4).

� In order to answer queries that require both streaming and historical information, data
from the streaming layer need to be integrated with historical information in real-time
(Section 2.5).

� Data serialization formats which facilitate �exible communication between di�erent mod-
ules (Section 2.6).

In the following, a brief review of the most prevalent technologies for the above areas is provided.

2.1 Message Bus

2.1.1 Apache Kafka

Kafka1 is a distributed, partitioned, replicated commit log service [23]. It provides the function-
ality of a messaging system.

1. Kafka maintains feeds of messages in categories called Topics.

2. Each Topic is partitioned for scalability and Partitions are distributed in the cluster.

3. Processes that publish messages to a Kafka Topic are called Producers.

4. Processes that subscribe to Topics and process the feed of published messages are called
Consumers.

5. Kafka runs in a Cluster comprised of one or more servers each of which is called a Broker.
1http://kafka.apache.org/

3

http://kafka.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Messaging traditionally has two models: queuing and publish-subscribe. In a queue, a pool
of consumers may read from a server and each message goes to one of them; in publish-subscribe
the message is broadcast to all consumers. Kafka o�ers a single consumer abstraction that
generalizes both of these, the Consumer Group.

At a high level, Producers send messages over the network to the Kafka cluster, which in
turn serves them up to Consumers. A Topic is a category or feed name to which messages are
published. For each Topic, the Kafka cluster maintains a partitioned log. The Kafka cluster
retains all published messages, whether or not they have been consumed, for a con�gurable
period of time.

Producers publish data to the Topics of their choice. The Producer is responsible for choosing
which message to assign to which partition within the Topic. This can be done in a round-robin
fashion simply to balance load or according to some custom partition function (say based on the
key of the message).

In more detail, each partition is an ordered, immutable sequence of messages that is continu-
ally appended to a commit log. The messages in the partitions are each assigned a sequential id
number called the O�set that uniquely identi�es each message within the partition. Partitions
act as the unit of parallelism and allow a Topic to be stored on more than one server. The Par-
titions of the log are distributed over the servers in the Kafka cluster, with each server handling
data and requests for a share of the partitions. The partitioning function can be a custom parti-
tioning scheme to optimally distribute the partitions according to the application requirements.
Each partition is replicated across a con�gurable number of servers for fault-tolerance.

2.2 Data Storage

2.2.1 The Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS)2 is a distributed �le system designed to run on
commodity hardware. It has many similarities with existing distributed �le systems. However,
the di�erences from other distributed �le systems are signi�cant. HDFS is highly fault-tolerant
and is designed to be deployed on low-cost hardware. HDFS provides high throughput access to
application data and is suitable for applications that have large data sets.

HDFS is designed and optimized for storing very large �les and with a streaming access
pattern. Since it is expected to run on commodity hardware, it is designed to take into account
and handle failures on individual machines. HDFS is normally not the primary storage of the
data. Rather, in a typical work�ow, data is copied over to HDFS for the purpose of performing
MapReduce, and the results then copied out from HDFS. Since HDFS is optimized for streaming
access of large �les, random access to parts of �les is signi�cantly more expensive than sequential
access, and there is also no support for updating �les, only append is possible. The typical
scenario of applications using HDFS follows a write-once read-many access model.

HDFS adopts a master/slave architecture. An HDFS cluster consists of a single NameNode,
a master server that manages the �le system namespace and regulates access to �les by clients.
In addition, there are a number of DataNodes, usually one per node in the cluster, which manage
storage attached to the nodes that they run on. HDFS exposes a �le system namespace and allows
user data to be stored in �les. Internally, a �le is split into one or more blocks and these blocks
are stored in a set of DataNodes. The NameNode executes �le system namespace operations

2https://wiki.apache.org/hadoop/HDFS

4

https://wiki.apache.org/hadoop/HDFS


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

like opening, closing, and renaming �les and directories. It also maintains the mapping of blocks
to DataNodes. The DataNodes are responsible for serving read and write requests from the
�le system's clients. The DataNodes also perform block creation, deletion, and replication upon
instruction from the NameNode. HDFS is the de-facto �lesystem in the Hadoop environment [24].
It provides replication and fault-tolerance and is compatible with all the serialization frameworks.

Thus the �rst option to data storage for datAcron is to organize data as �at �les appro-
priately partitioned across the cluster. One bene�t of storing �at �les on top of HDFS is that
the distribution of the �les in the cluster can be controlled and the �le format can be chosen
appropriately for each use-case. One drawback of this solution is that manual rebalancing of the
nodes is required for non-static data.

2.2.2 Cassandra

Cassandra3 is a column-oriented NoSQL database engine. It follows the data-model of Google's
Bigtable [8] and has an architecture resembling Amazon's DynamoDB [21] for fault-tolerance.
Cassandra follows the following storage model:

� Keyspaces: A keyspace holds Tables.

� Table: A Table consists of Rows.

� Row: A Row is uniquely identi�able by its RowKey that must be unique amongst di�erent
Rows. A row consists of Column Families.

� Column Family: A column family consists of several columns.

� Column: Each column has a name and a value.

In Cassandra, rows are partitioned by means of hashing, however customized partitioning is
also supported. An in-order partitioner keeps row-keys in sorted order thus has the bene�t that
it supports e�cient Range Queries, but can lead to hot nodes if the data distribution is skewed.
Hash-partitioning on the other hand has the advantage that it ensures load-balancing through
the random distribution of keys in the cluster, but leads to ine�cient processing of range queries.

Column Families (i.e., user-de�ned groups of columns) are sorted either lexicographically
based on their data-type or by a custom comparator. Because of the sorted row and columns
Cassandra can provide slicing and �ltering on both rows and columns. One common design
pattern for Cassandra to avoid disk waste when we have a single value for each column name,
is to store a value in the name of the column family. Also, because Cassandra does not support
joins, it is common practice to compute and store materialized views. Cassandra o�ers tunable
consistency and is a write-optimized store, since con�ict resolution is resolved at read time. This
may result in degraded read performance.

2.2.3 Apache Hbase

Apache Hbase4 is an implementation of Google's Bigtable [8] for the Hadoop ecosystem. The data
model is the same as Cassandra's (and Bigtable's) described above. One important distinction is
that in Hbase there is no need for the valueless column design. Hbase provides several advanced
features such as:

3http://cassandra.apache.org/
4https://hbase.apache.org/

5

http://cassandra.apache.org/
https://hbase.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

� Filters allow the user to specify the subset of objects from the query result that will be
returned to the client. The bene�t is that they run on the server-side, thus reducing the
amount of data that needs to be transferred. Examples include �ltering rows based on key
pre�xes or some regular expression. Filters can also be combined in a FilterList (a set of
�lters), which is applicable on the result using either AND or OR semantics.

� Coprocessors provide even more �exibility than �lters in terms of querying. They are
essentially user code that can be deployed in the Hbase cluster. Mainly, there are 2 types
of coprocessors:

� Observers, where for each base operation, i.e., put, the user can deploy custom code
in form of hooks that can either pre-process the input parameters or post-process the
results.

� Endpoints, that act like functions and can be invoked through Remote Procedure Calls
(RPC).

Hbase supports Range Scans and Pre�x Range Scans, which is the same as a Range Scan and a
Pre�xFilter.

2.2.4 Pivotal GemFire and Apache Geode

Pivotal GemFire or its Apache incubating equivalent Apache Geode5 is an in-memory scalable
datastore. Because of its in-memory nature it is a good match for storing data and state in the
streaming component of the datAcron architecture. GemFire supports Range Partitioning for
e�cient range queries and table joins. It also supports co-locating rows from di�erent tables.

2.3 Batch Processing

2.3.1 Apache Hadoop

Hadoop [24] is an open-source implementation of MapReduce. Hadoop consists of two main
parts: the Hadoop distributed �le system (HDFS) and MapReduce for distributed processing.
Hadoop consists of a number of di�erent daemons/servers: NameNode, DataNode, and Secondary
NameNode for managing HDFS, and JobTracker and TaskTracker for performing MapReduce.

In Hadoop, the JobTracker is the access point for clients. The duty of the JobTracker is
to ensure fair and e�cient scheduling of incoming MapReduce jobs, and assign the tasks to
the TaskTrackers which are responsible for execution. A TaskTracker can run a number of
tasks depending on available resources (for example two map tasks and two reduce tasks), and
will be allocated a new task by the JobTracker when ready. The relatively small size of each
task compared to the large number of tasks in total helps to ensure load balancing among the
machines. It should be noted that while the number of map tasks to be performed is based on
the input size (number of splits), the number of reduce tasks for a particular job is user-speci�ed.

In a large cluster, machine failures are expected to occur frequently, and in order to handle
this, regular heartbeat messages are sent from TaskTrackers to the JobTracker periodically, and
from the map and reduce tasks to the TaskTracker. In this way, failures can be detected and the
JobTracker can reschedule the failed task to another TaskTracker. Hadoop follows a speculative
execution model for handling failures. Instead of �xing a failed or slow-running task, it executes a

5http://geode.apache.org/

6

http://geode.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

new equivalent task as backup. Failure of the JobTracker itself cannot be handled automatically,
but the probability of failure of one particular machine is low so that this should not present a
problem in general. Despite its numerous advantages, Hadoop also has signi�cant limitations, as
pointed out in [9].

2.3.2 Apache Spark

Spark6 is an in-memory data processing system [31]. Spark solves most of the ine�ciencies of
Hadoop, and performs much faster in typical use-cases, as reported also in [20] (among others).
Spark also has a rich ecosystem of auxiliary libraries such as GraphX [26] for graph processing
and MLlib [17] for machine learning.

The main abstraction in Spark is the Resilient Distributed Datasets (RDDs) [30] that are
cached across the memory hierarchy. RDDs are immutable and their operations are lazy; fault-
tolerance is achieved by keeping track of the �lineage� of each RDD (the sequence of operations
that produced it) so that it can be reconstructed in the case of data loss. RDDs can contain any
type of Python, Java, or Scala objects.

Aside from the RDD-oriented functional style of programming, Spark provides two restricted
forms of shared variables:

1. broadcast variables, reference read-only data that needs to be available on all nodes.

2. accumulators, that perform reductions in an imperative style.

Recently Spark introduced DataFrames7 and its typed variant Datasets8. Dataframes al-
low a higher level abstraction to distributed collections of data by imposing structure to the
data. Also, Dataframes use custom memory representation and allow advanced query optimiza-
tion [10]. Datasets bring extra performance boost to Spark, by collapsing the whole query into
a single function9. This makes Spark the primary candidate for implementing batch processing
functionality nowadays.

2.4 Stream/Real-time Processing

2.4.1 Apache Storm and Heron

Storm10 is a framework that targets real-time processing and analysis of data streams, with
salient features such as scalability, parallelism and fault-tolerance [22]. There are two kinds of
nodes on a Storm cluster:

1. the master node that runs a daemon called Nimbus. Nimbus is responsible for distributing
code around the cluster, assigning tasks to machines, and monitoring for failures.

2. the worker nodes that run a daemon called the Supervisor. The supervisor listens for work
assigned to its machine and starts and stops worker processes as necessary based on what
Nimbus has assigned to it. Each worker process executes a subset of a Topology.

6http://spark.apache.org/
7https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.

html
8https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
9https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.

html
10http://storm.apache.org/

7

http://spark.apache.org/
https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
https://databricks.com/blog/2015/02/17/introducing-dataframes-in-spark-for-large-scale-data-science.html
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.html
https://databricks.com/blog/2016/05/11/apache-spark-2-0-technical-preview-easier-faster-and-smarter.html
http://storm.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

A Topology is a graph of computation. Each node in a Topology contains processing logic,
and links between nodes indicate how data should be passed around between nodes. A running
Topology consists of many worker processes spread across many machines. All coordination
between Nimbus and the Supervisors is done through a Zookeeper cluster. Additionally, the
Nimbus daemon and Supervisor daemons are fail-fast and stateless; all state is kept in Zookeeper.
The core abstraction in Storm is the stream. A stream is an unbounded sequence of tuples. Storm
provides the primitives for transforming a stream into a new stream in a distributed and reliable
way. The basic primitives Storm provides for doing stream transformations:

1. Spouts: is a source of streams.

2. Bolts: consumes any number of input streams, does some processing, and possibly emits
new streams.

Spouts and bolts have interfaces that implement application-speci�c logic.
Networks of spouts and bolts are packaged into a Topology which is the top-level abstraction

that you submit to Storm clusters for execution. A Topology is a graph of stream transformations
where each node is a spout or bolt. Edges in the graph indicate which bolts are subscribing to
which streams. When a spout or bolt emits a tuple to a stream, it sends the tuple to every
bolt that subscribed to that stream. Storm provides one-by-one tuple processing with either
at least-once or at-most-once delivery guaranties. The Trident API, built on top of Storm, can
provide a micro-batching abstraction, thus enabling support for e�cient windowing, exactly once
processing and higher throughput. Heron [13] addresses a lot of the shortcomings of Storm while
keeping the same programming model.

2.4.2 Spark Streaming

Spark also provides a streaming processing framework, Spark Streaming [32], that provides a
micro-batching abstraction for streaming data and o�ers a variety of streaming algorithms and
approximations. Structured Streaming11, introduced in Spark 2.0, generalizes the Datasets API
for the streaming layer of the application. Using Structured Streaming, developers can build
continuous applications without having to reason about transactional updates to the datastore,
fault-tolerance, state and state keeping. It also supports event-time processing and joins with a
Dataframe from the batch layer of Spark. A drawback is that not all input-output sources are
supported at the moment and that the developer is restricted to the Datasets API. Structured
streaming would be an appropriate choice for real-time processing tasks that belong to the tactical
latency12 in datAcron since it supports merging streaming with batch data out-of-the-box.

2.4.3 Apache Flink

Flink13 is a streaming data�ow engine that provides data distribution, communication, and
fault-tolerance for distributed computations over data streams [7]. It is based on results of
the Stratosphere project [4] and also connects to Google's data�ow [3], and supports �exible
windowing (time, count, sessions, custom triggers) across di�erent time semantics (event time,
processing time).

Flink includes several APIs for creating applications that use the Flink engine:

1. DataStream API for unbounded streams embedded in Java and Scala.
11https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
12Recall the three latency levels relevant for datAcron as de�ned in deliverable D1.1: operational (in millisec-

onds), tactical (in few seconds), and strategic (tens of seconds or minutes)
13https://flink.apache.org/

8

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://flink.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2. DataSet API for static data embedded in Java, Scala, and Python.

3. Table API with a SQL-like expression language embedded in Java and Scala.

It also provides libraries for streaming machine learning and graph processing. Flink has process-
ing latency comparable to Storm and it is signi�cantly superior to Spark Streaming especially
for small window sizes14. Flink is the primary contender for tasks that require sophisticated
algorithms and do not require the outmost lower latency.

2.4.4 Kafka Streams

Kafka streams15 is a Java library implemented on top of Kafka for lightweight streaming pro-
cessing. Kafka Streams provides two basic abstractions:

� KStream: In a stream, each key-value is an independent piece of information.

� KTable: A table is a changelog. If the table contains a key-value pair for the same key
twice, the latter overwrites the mapping.

An important feature of Kafka Streams is stateful stream processors. Each task in Kafka Streams
is a combination of a set of Topic's partitions and a topology, can have a local store, that is either
in-memory or a persistent key-value data-store (by default this is RocksDB). Even though these
stores are local (hence, giving fast access times), they are backed by a Kafka Topic, which contains
the changelog for each such store to provide reliability.

It is possible to inner/outer/left join two KStreams, a KStream to a KTable or two KTables.
A join between a KStream and a KTable works by storing the current (local) KTable state in
the local store, and looking up a value for each incoming stream element. For a join between
two KStreams it is mandatory to specify a time window, in which elements from both streams
will be matched. For the joins to work, both streams must use same types of keys, as the joins
always match on the key values.

It is possible to use di�erent timestamps for windowing operations: event time (de�ned by
whatever creates the event), ingestion time (when the event is stored into Kafka), and processing
time (when the event is processed). When aggregating elements in time windows, it is possible
to use any of these timestamps (by using a custom or one of the built-in TimestampExtractor)

Kafka Streams is the primary choice for simple tasks that require the lowest latency available.

2.4.5 Comparison

Due to the di�erent options regarding stream processing, as well as the signi�cance of real-time
operations in datAcron, we provide a Table 1 that summarizes our �ndings for stream processing
in a comparative way. In this comparison, we focus on four dimensions of interest: windowing
functionality, state management, latency, and delivery guarantees.

An additional observation is that, in datAcron, the latency dimension is important, since
many operations need to be performed in real-time and also with operational latency (in mil-
liseconds). As such, it is expected that the choice of a particular streaming processing framework
is going to be in�uenced by the minimum latency that can be achieved, thus narrowing down
the pool of choices of framework for speci�c time-critical tasks in datAcron.

14https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
15https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/

9

https://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-computation-engines-at
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Storm Storm + Tri-
dent

Flink Spark
Streaming

Kafka
Streams

Windowing time-based,
count-based

time-based,
count-based

time-based,
count-based

time-based time-based

State Man-
agement

record
acknowledg-
ment

record
acknowledg-
ment

distributed
snapshots

checkpoints local and
distributed
snapshots

Latency very low medium low (con�g-
urable)

medium very low

Delivery
Guaranties

at-least once exactly-once exactly once exactly once at-least once
and there
is on going
work for
exactly once

Table 1: Comparison of the capabilities of streaming processing frameworks

Figure 1: The Lambda Architecture

2.5 Combining Batch with Real-time Processing

2.5.1 Lambda Architecture

The Lambda Architecture, depicted in Figure 1, is a streaming and batch processing architecture
paradigm that aims to simplify stream processing at scale. The Lambda Architecture makes a
clear distinction between the real-time and the historical data in the system. Streaming data
arrive at a high rate and the end-user needs to extract information quickly, even at the cost
of lower accuracy. Historical data on the other side can be queried and aggregated at higher
latencies.

The Lambda Architecture periodically merges streaming with historical data and re-runs the
computation using o�ine (batch processing) algorithms. Also, materialized views of the dataset
are created, in order to provide e�cient merging and query response. In more detail, the Lambda
Architecture consists of three components:

1. The Batch Layer: The batch layer contains the immutable master dataset. Eventually all
data are merged into the master dataset. The batch layer performs computation for the

10



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

entire dataset continuously.

2. The Serving Layer: The serving layer serves views of the data while the batch layer com-
putes the next iteration and provides indexing and materialized views.

3. The Speed Layer: The speed layer contains the information that has not been yet incorpo-
rated into the batch or serving layer.

2.5.2 Kappa Architecture

One of the biggest drawbacks of the Lambda Architecture is that the code responsible for a
certain query has to be implemented twice, one for the batch and one for the stream layer. This
means that the code needs to be modi�ed and maintained in two places. Unlike the Lambda
Architecture, the Kappa Architecture, depicted in Figure 2, considers the batch layer as a �nite
stream so there is no need to implement the same algorithm twice since everything is a stream.
This also alleviates the need for the batch layer to recompute data that the Speed Layer has
already computed.

In the Kappa Architecture, the user starts a streaming job on the log, after she has speci�ed
the desired start o�set. In more detail, the Kappa Architecture works as follows:

1. It requires Kafka or some other system that supports multiple subscribers and log retention
for the desired period of time. For example, in case the application logic dictates that there
is a need to reprocess up to 30 days of data, the retention of the log needs to be set to 30
days.

2. When reprocessing is required, a second instance of the stream processing job is initiated
that starts processing from the beginning of the retained data, but this output data is
directed to a new output table.

3. When the second job has caught up, the application is switched to read from the new table.

4. Then, the old version of the job is stopped and the old output table is deleted.

Figure 2: The Kappa Architecture

11



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2.6 Data Serialization

2.6.1 Avro

Avro16 is a row format for �les. It is a top-level Apache project that has great integration with
the Hadoop ecosystem and related projects (such as Parquet).

Avro provides:

1. Rich data structures.

2. A compact, binary data format.

3. A container �le, to store persistent data.

4. Remote procedure call (RPC).

5. Simple integration with dynamic languages (languages that do not provide static types).
Code generation is not required to read or write data �les; in fact, code generation is an
optional optimization. This leads to less verbose source code and more �exible schema
evolution.

Avro relies on Schemas. When Avro data is read, the schema used when writing it is always
present. This permits each datum to be written with no per-value overheads, making serialization
both fast and small. This also facilitates use with dynamic, scripting languages, since data,
together with its schema, is fully self-describing.

When Avro data is stored in a �le, its schema is stored with it, so that �les may be processed
later by any program. If the program reading the data expects a di�erent schema this can be
easily resolved, since both schemas are present.

When Avro is used in RPC, the client and server exchange schemas in the connection hand-
shake. This can be optimised so that, for most calls, no schemas are actually transmitted. Since
both client and server both have the other's full schema, correspondence between same named
�elds, missing �elds, extra �elds, etc., can all be easily resolved. This is also possible when using
Avro together with Kafka using Con�uent's Schema Registry. Avro schemas are de�ned with
JSON. This facilitates implementation in languages that already have JSON libraries.

Avro provides functionality similar to systems such as Thrift and Protocol Bu�ers. Avro
di�ers from these systems in the following fundamental aspects.

1. Dynamic typing: Avro does not require that code be generated. Data is always accom-
panied by a schema that permits full processing of that data without code generation,
static datatypes, etc. This facilitates construction of generic data-processing systems and
languages. This also means that the schema can easily evolve over time.

2. Untagged data: Since the schema is present when data is read, considerably less type
information need be encoded with data, resulting in smaller serialization size.

3. No manually-assigned �eld IDs: When a schema changes, both the old and new schema
are always present when processing data, so di�erences may be resolved symbolically, using
�eld names.

Avro being a row-store is appropriate when we need to extract all the �elds of the record at
once, while Parquet (described below) being a column store is very e�cient for �ltering records
according to the value in a single column or retrieve a limited number of columns in our dataset.

16https://avro.apache.org/

12

https://avro.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2.6.2 Parquet

Parquet17 aims to provide compressed, e�cient columnar data representation for the Hadoop
ecosystem. Parquet is built with complex nested data structures in mind, and uses the record
shredding and assembly algorithm described in Dremel [15, 16]. Parquet supports very e�cient
compression and encoding schemes. Parquet allows compression schemes to be speci�ed on a
per-column level, and is future-proofed to allow adding more encodings as they are invented and
implemented.

Parquet has the following building blocks:

1. Block (HDFS block): This means a block in HDFS and the meaning is unchanged for
describing this �le format. The �le format is designed to work well on top of HDFS.

2. File: An HDFS �le that must include the metadata for the �le. It does not need to actually
contain the data.

3. Row group: A logical horizontal partitioning of the data into rows. There is no physical
structure that is guaranteed for a row group. A row group consists of a column chunk for
each column in the dataset.

4. Column chunk : A chunk of the data for a particular column. These live in a particular
row group and are guaranteed to be contiguous in the �le.

5. Page: Column chunks are divided up into pages. A page is conceptually an indivisible
unit (in terms of compression and encoding). There can be multiple page types which is
interleaved in a column chunk.

Hierarchically, a �le consists of one or more Row Groups. A Row Group contains exactly one
column chunk per column. Column chunks contain one or more Pages

When reading or writing a Parquet �le, operations are performed in parallel in the following
granularity:

1. MapReduce - File/Row Group.

2. IO - Column chunk.

3. Encoding/Compression - Page.

Parquet has the following con�gurable parameters:

1. Row group size: Larger row groups allow for larger column chunks which makes it possible
to do larger sequential IO. Larger groups also require more bu�ering in the write path (or
a two pass write). Large row groups are recommended (512MB - 1GB).

2. Since an entire row group might need to be read, it should completely �t in one HDFS
block. Therefore, HDFS block sizes should also be set to be larger. An optimised read
setup would be: 1GB row groups, 1GB HDFS block size, 1 HDFS block per HDFS �le.

3. Data page size: Data pages should be considered indivisible so smaller data pages allow
for more �ne grained reading (e.g. single row lookup). Larger page sizes incur less space
overhead (less page headers) and potentially less parsing overhead (processing headers). It
should be noted that for sequential scans it is not expected to read a page at a time; this
is not the IO chunk.

17https://parquet.apache.org/

13

https://parquet.apache.org/


D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2.7 Recommendations for the datAcron Architecture

2.7.1 datAcron Data Management Architecture

The datAcron architecture cannot be straightforwardly mapped to the Lambda or the Kappa
Architecture, although it resembles the Lambda architecture. Instead, due to the peculiarities
of the real-time operations that must be performed, the following needs are identi�ed:

1. There will be a Batch Layer as in the Lambda Architecture, containing contextual and
historical information.

2. There will be multiple Streaming Layers with di�erent time-constraints and optional inte-
gration with historical data.

3. For the initial phase, there will be no Serving Layer per-se. The individual data analytics
component is going to have the responsibility of merging the data from the Batch Layer
with a selection of data from the Streaming Layers.

The datAcron architecture will provide speci�c integration between the historical information
and the streams in speci�c latency constraints. Apart from the integrated information provided
by the data management system, the data analytics components will be responsible for merging
the information. This means that the system will provide a pre-de�ned integration of speci�c
data sources at the Batch Layer. Real-time and time-critical operations are going to be performed
in the Streaming Layers.

2.7.2 Batch Processing

The choice for batch processing in datAcron is Apache Spark, mainly due to the high through-
put and processing optimizations o�ered. After careful review of alternative choices for batch
processing, which were available at the time of writing this report, it is quite clear that Spark
o�ers superior performance to frameworks such as Hadoop, and it is more actively supported by
the community, with new features and libraries being added continuously.

2.7.3 Stream Processing

With regards to stream processing in datAcron, we consider a tiered streaming solution:

1. For low latency operations (operational latency) that need to maintain state we have two
options: either Kafka Streams, that provide both a high and a low-level API and e�cient
storage backed by Kafka, or Storm that supports bidirectional communication through
Spouts.

2. For medium latency operation (on the order of a few milliseconds, still operational latency
but with looser constraints) with complex event-time windowing logic, we opt to use Flink.

3. For near real-time operations (tactical and strategic latency) Spark Streaming can be used
since from version 2.0 onwards it supports event-time windowing semantics in Structured
Streaming together with out-of-the-box merging of the batch and streaming layer. On top
of that, writing code for streaming Dataframes is not di�erent than regular Dataframes, so
there will be minimal code duplication in this incarnation of the Lambda Architecture.

14



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

2.7.4 Data Storage

For data storage, a tiered architecture can deal with the following constraints:

1. For read-only datasets that do not need range scan support (such as analysis results from
the data analytics components) we opt for Parquet, since Parquet o�ers superior read
performance, column projections and e�cient compression, but at the time of this writing
lacks support for indexed scans. Parquet is just a �le format so there is no dependency
apart from HDFS.

2. For historical datasets (such as the integrated data stored in datAcron) that are append-
only, di�erent alternatives exist depending on the access patterns. If there is no need for
random access, then HDFS is a viable solution. If random access is necessary, then pure
HDFS is not adequate, and alternatives such as Hbase or Cassandra are options. Hbase
is part of the Hadoop ecosystem, thus there is no operational cost, whereas Cassandra
requires a separate Cassandra Cluster.

3. For mostly-aggregates, update-able datasets, Hbase or Cassandra can be employed, in case
these datasets are too large to �t entirely in memory and need persistence. For in-memory
datasets, many other options are available.

4. For the streaming component we need in-memory structures to hold state and temporary
aggregation, before they are ingested into persistent storage. Here our options are KTables,
FiloDB or GemFire, depending on the nature of the input data, the queries and the inges-
tion process we want to support. KTables are part of Kafka, FiloDB builds on Cassandra
for persistent storage (if this functionality is required), and GemFire requires a separate
cluster.

2.7.5 Data Serialization

For the data serialization format, we plan to use either Avro or Parquet, depending on the
use-case:

1. For generic data exchange with a predetermined schema, Avro is our choice. Avro has
quick serialization and since we do not need �ltering on the columns of the payload, its
row format is a nice �t.

2. For exchanging information that will later be stored as immutable datasets in Parquet (such
as the machine learning models and parameters from data analytics components and their
respective analysis results) or data that we might need to �lter and keep only a portion, of
our choice will be Parquet.

15



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

3 The datAcron Integrated System Architecture

The project datAcron aims at recognizing and forecasting complex events and trajectories from a
wealth of input data, both data-at-rest and data-in-motion, by applying appropriate techniques
for Big Data analysis. The technical challenges associated with Big Data analysis are manifold,
and perhaps better illustrated in [2, 11], where the Big Data Analysis Pipeline is presented. As
depicted in Figure 3, �ve major phases (or steps) are identi�ed in the processing pipeline:

1. Data Acquisition and Recording

2. Information Extraction and Cleaning

3. Data Integration, Aggregation, and Representation

4. Query Processing, Data Modeling, and Analysis

5. Interpretation

Acquisition/ 
Recording

Extraction/ 
Cleaning/

Annotation

Integration/ 
Aggregation/ 

Representation

Analysis/ 
Modeling

Interpretation

Figure 3: Major steps in analysis of Big Data.

The datAcron architecture also targets Big Data analysis and includes the afore-described
major steps. The datAcron architecture is illustrated in Figure 4 and is composed of the following
six main components:

� Synopses Generator : Its main role is to provide the algorithms for trajectory compres-
sion, by eliminating many positions of moving objects that do not signi�cantly a�ect the
quality of the representation.

� In-situ Processing : This component is responsible for executing processing tasks, such
as detection of low-level events, on the premise of the actual streams.

� Data Manager : The data management component stores integrated data-at-rest with
data-in-motion, as well as analysis results from other components, and provides querying
functionality on top of a uni�ed view of data, due to the data integration. Persistent
storage and querying of integrated data is provided by means of a distributed RDF store,
which is a module maintained by the Data Manager .

� Trajectory Detection and Prediction : This component performs trajectory prediction,
both in real-time and o�ine, as well as advanced data analytics related to moving objects.

� Event Recognition and Forecasting : This component is responsible for detection and
forecasting of complex events related to the mobility of objects.

16



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

� Visual Analytics: The exploratory data analytics component provides visualization fa-
cilities as well as the opportunity to explore di�erent values for the parameters of the
algorithms and provide better models for the event detection and trajectory prediction
components.

Inputs to the datAcron architecture consist of data-at-rest (archival data) and data-in-motion
(streaming data). Archival data are loaded in the Data Manager , and during this process they
are transformed, integrated, and stored as will be described in detail in the sequel. On the
other hand, a distinction is made for streaming data, namely whether they are positional data
describing the spatio-temporal movement of objects (trajectories) or not. Trajectories are treated
as ��rst-class� citizens in datAcron, thus trajectory data is summarized (at Synopses Generator)
and associated with low-level events (during In-situ Processing). Also, they are integrated in the
Data Manager component, before storing, with existing (static) data, such as ports, airports,
information about the moving object (vessel/aircraft type, model, etc.). Other streaming data,
such as weather forecasts, �ight plans, regulations, etc., are directly fetched by the Data Manager,
in order to be integrated with the other available data.

The following streams of data are available in the datAcron system, either as input streams
or as generated streams by datAcron components:

� raw data stream of surveillance data, as it arrives in the datAcron system

� compressed stream of surveillance data, which consists of �critical points� only, after having
discarded positions that do not carry useful information about the movement of the object

� enriched stream of surveillance data, which identi�es low-level events associated to positions
of moving objects

� integrated stream of surveillance data, which adds contextual information to the positions
after performing integration with all di�erent data sources (data-at-rest) available to the
Data Manager

The afore-described streams are available to all components that perform data analytics in real-
time, namely Trajectory Detection and Prediction, Event Recognition and Forecasting and Visual
Analytics, in order to provide the input necessary for the respective data analysis tasks. In
essence, this results in a loosely-coupled architecture, where higher level components that perform
data analytics can consume the output of other components that perform data extraction or
integration, in order to optimize their operation in real-time. Also, data analytics components
may also interact with each other; for instance, the Visual Analytics component visualizes the
events detected or predicted by the Event Recognition and Forecasting component in order to
perform visual analytics, and the Event Recognition and Forecasting component takes as input
the trajectories detected or predicted by Trajectory Detection and Prediction to identify complex
events related to trajectories.

When considering outputs of the datAcron architecture to the end-user, these consist of
detected and forecast events, data analytics results (detected and predicted trajectories and
events, exploratory visual analytics, etc.) initiated by a user that performs a speci�c task, and
results to queries over the integrated data provided by the Data Manager .

The key issues for the datAcron architecture are as follows:

� The data synopses computed near to the sources aim to largely reduce at a high compression
rate the streaming data that the data management and analytics layers have to manage.
However, access to the raw streaming data is still an option for the analytics components,
in case a component requires this explicitly.

17



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Figure 4: The datAcron Architecture.

� The data synopses computed from multiple streams can already be integrated at the lower
processing components (near to the sources). Data synopses and archival data are trans-
formed into a common form according to the dataAcron RDFS schema, are integrated
(where necessary) and are pipelined to the rest of the analytics components directly, in
real-time. This alleviates the need for analytics components to access datAcron stores
frequently.

� �Raw� streaming data are not stored as they enter the system: Persistent storage concerns
data synopses, semantically annotated and integrated to archival data, trajectories and
events detected. The datAcron stores will provide advanced query answering services for
other system components and human or software clients to access these data, according to
their requirements on integrated data views.

The above architecture has certain bene�ts:

� All data from streaming and archival data sources, as well as trajectories and events com-
puted by analytics components can be semantically integrated by discovering links between
respective instances, providing semantically-rich coherent views of data. Doing so, dat-
Acron seamlessly annotates trajectories and events with semantic information, and it links
these among themselves as well as with the rest of archival and cross-streaming data.

� All analytics components can take full bene�t of the computations of others, also taking
advantage of interlinking between their results. Thus, the trajectory detection and fore-
casting methods can bene�t from events detected or forecasted and vise-versa. Similarly
for the visual analytics methods.

18



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

� Users can interact and explore data via integrated data views, being supported for decision-
making.

In the following, we delve in more details regarding the functionality of each individual
component, but also their interactions in order to realize the objectives of datAcron.

3.1 Synopses Generator

The Synopses Generator is responsible for producing trajectory synopses by examining the raw
input stream of positional data and eliminating those positions that do not carry useful infor-
mation regarding the movement of the object. As depicted in Figure 5, Synopses Generator
contains two discrete modules:

� Trajectory Constructor

� Trajectory Compressor

Figure 5: The internal operation of the Synopses Generator component.

Trajectory Constructor: Reconstructing trajectories from surveillance data will provide
representation in time of the original (raw) positions that are being received as input. In e�ect,
distinct sequences of timestamped positions per moving object will be obtained, after excluding
any inherent noise detected in the streaming positions due to e.g., delayed arrival of messages,
duplicate messages, etc. The resulting trajectories will be available in a streaming fashion,
including every �clean� position from the input raw data. It is not envisaged that this information
will be permanently stored in RDF repository.

Trajectory Compressor: Maintaining trajectory synopses from surveillance data will o�er
representation in time of characteristic positions from each moving object. Based on the recon-
structed trajectories emitted by the previous module, this compressor will track major changes
along each object's movement. Given that vessels and aircrafts normally follow planned routes
(except for adverse weather conditions, congestion situations, accidents, etc.), this process will
instantly identify �critical points� along each trajectory. These are point locations of each object
that can be characterized from (strictly) mobility features, such as stop, turn, or speed change,
without taking into account any contextual information. Therefore, an approximate, simpli�ed
trajectory (what we call trajectory synopsis) may be maintained consisting of critical points only,
e�ectively discarding redundant locations along a �normal� course. Thanks to online computa-
tion of such trajectory synopses, object traces should remain lightweight for e�cient processing

19



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

without sacri�cing accuracy, and can be easily compared to each other irrespectively of the actual
reporting frequency that may di�er among objects.

Once detected, each critical point in such trajectory synopses will be handled by the Data
Manager component. First, critical points are going to be semantically linked and contextually
enriched. This information is going to be streamed out from the Data Manager as an integrated
stream, so as to be immediately available to other components for real-time operations. In
addition, this information will eventually result in semantic trajectories, stored in the RDF
store, and will be available for querying, o�ine processing, mining, etc.

3.2 In-situ Processing

In-situ Processing refers in general to the possibility to process streaming data as �downwards�
in-stream as possible. Processing streaming data close to data source provides a number of
inherent advantages:

� Communication can be reduced in size and number of messages. Too many or too large
messages often induce a communication overhead that implies penalties in terms of perfor-
mance and transmissions costs. Reducing size and number of messages at an early stage
helps to control overall costs and resource consumption of the complete system.

� Latency is reduced and reactivity increased. Processing data close to the source reduces the
number of steps and/or systems the data has to pass in order to be analyzed. Consequently,
latency in detection of analytical results is reduced and critical events, such as for example
trajectory deviations, can be detected and signaled earlier to the applications.

� Complexity of the applications is reduced. In-situ processing can already provide aggre-
gated, �ltered and condensed views on the current state of the external views such that
applications and visualization is relieved from the burden of processing raw data. For exam-
ple, detection of derived events such as crossing of section boundaries will be implemented
in-situ such that the application can make use of these derived complex events without any
need for further analytics inside of the application.

Figure 6 depicts the principle architectural design and placement of the In-situ Processing
components in the datAcron architecture. Referring this �gure, the data integrator provides
functionality for providing an integrated, semantically enriched view on the data which is being
stored in the RDF triple store. As it could be done in the Lambda Architecture, In-situ Processing
is placed before the entry of the data into the data integrator. It consumes data from incoming
data streams and generates via in-stream analytics higher level, enriched data streams, which
are consumable by:

� further, higher level analytical steps in the in-situ processing chain,

� the data integrator, or

� the datAcron application and visualization modules

In order to support this kind of multi-stage, multi-target stream processing, the architecture
makes use of a message bus system as provided by Kafka. In this design, di�erent streams can
be distinguished by name (e.g. �Topic� in Kafka) and the same data, potentially aggregated

20



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Figure 6: The In-situ Processing components in the datAcron Architecture.

or enriched via in-stream analytic, can be communicated in di�erent streams, re�ecting the
order and hierarchy of the analytical steps performed by the In-situ Processing components. In
addition, as Kafka o�ers the possibility to persist the data contained in the streams, it can be
used as basic store for the unprocessed, raw data in style on the Kappa architecture (Figure 2).
As the In-situ Processing components consume, analyze, and produce Kafka streams, they can be
implemented in any stream processing system that connects to Kafka. In sum, the architectural
integration of the In-situ Processing components is exhibited by the following characteristics:

� Kafka acts as central message bus and repository for raw data (in style of the Kappa
architecture)

� Every component working in-stream/in-situ reads some Kafka stream, processes the data,
and sends back results as some other Kafka stream

� For stream processing, several options are possible and can be intermixed, depending on
use case requirements and algorithmic choices of each component: Storm, Spark Streaming,
Flink, Kafka Streams

� The Data Manager also extracts the data from Kafka and converts it to semantically linked
triples that are stored in the RDF store

� Batch applications from all data analytics components read/write data from/to the RDF
store

� Real-Time monitoring apps in the data analytics components read data from Kafka

� Application-dependent input and parameters to the In-situ Processing components is sent
via Kafka streams to the In-situ Processing components

The last mentioned point addresses an important aspect and challenge of in-situ processing
that occurs when then In-situ Processing components depend on input or parameters provided by
the applications. For instance, in the detection of context related events, the context may change
or be varied by the application. In terms of use cases, this occurs for example in monitoring

21



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Figure 7: The Data Integrator : The data �ow during the data transformation and integration
process is depicted with main modules: (a) data connectors, (b) triple generator, (c) integrator,
and (d) triple encoder.

�ights via ADS-B data for detecting complex events such as entering or leaving sectors. When
the de�nition of sectors changes, this must be forwarded to theIn-situ Processing component as
well. Further examples include the application-dependent tuning of parameters for the In-situ
Processing components, which can occur on human feedback on the basis of visual analytics.

3.3 Data Manager

The Data Manager component plays a central role in the overall architecture, as it stores the
integrated data and provides parallel data processing functionality on top of the integrated data.
Its functionality is: (a) to transform and integrate any incoming data, whether streaming data,
archival data, or analysis results, into a coherent and uni�ed view, in sync with the datAcron
model, and (b) to e�ectively store the integrated data and develop query processing primitives
that allow parallel data processing at scale. Internally, Data Manager contains two main modules:
the Data Integrator and the Distributed Spatio-temporal RDF Store.

3.3.1 Data Integrator

The Data Integrator comprises four main modules, a) the Data Connector, b) the Triple Gen-
erator, c) the Integrator, and d) the Triple Encoder. Figure 7 depicts the interactions between
these modules.

Data Connector The Data Connector module implements the functions that accept data
from an individual data source. Moreover, it performs data conversion on values of speci�c �elds
as provided by the source. As the data sources can vary signi�cantly in terms of representation,
size, rate of data access, and noise, a Data Connector is provided for each type of source. Data
consumption from a wide range of sources/formats is going to be supported, such as: a) CSV
format, b) direct access to databases, c) JSON messages, d) XML �les, e) METAR/SPECI

22



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

weather reports from o�ine/continuous feeds from online services, f) binary (GRIB2) �les for
weather reports, g) SPARQL endpoints to online open data, h) ESRI shape-�les to convert
information about spatial object to entities and relations of the ontology, and i) proprietary
formats of streaming. The list of supported data formats can be easily extended, to support the
inclusion of any other data format required in the future.

Given a speci�c type of source, an editable con�guration �le determines the connector's
functionality. Thus, the same Data Connector can be reused across similar data sources, given the
appropriate con�guration. Furthermore, some basic data cleaning operations are implemented
and are applicable on the individual record level. However, such operations should have low
complexity, as the data consumption process should not incur signi�cant additional latency. The
data connector can also be charged with the responsibility of data conversion on values of speci�c
�elds in the source.

As an abstraction of the data source in hand, the Data Connector considers all data sources
as streams, i.e. it consumes data record-by-record (or tuple-by-tuple), as a stream of records to
be processed with minimal latency. This data access model makes no distinction on the nature
of data (e.g. archival data or streaming data). In addition, it minimizes the memory footprint of
Data Connectors, and enables scalability and parallelization as a multi-threaded process, both
for a single source and across sources.

Triple Generator The role of Triple Generator is to consume the data provided by the Data
Connector and generate the corresponding set of triples. This procedure depends on con�guration
�les providing a Graph Template GT , and a vector of variable names V. The vector V contains
the variables that appear in the Graph Template, and binds the values of the input record to
the variables in GT . The Graph Template consists of a set of triple patterns, i.e. any of the
three elements in the triple (subject, predicate, object) can be replaced by a variable. The
Graph Template di�ers from the standard RDF Graph Pattern, in that variables can be used
as arguments in functions, to compute dynamic values at runtime. The functions employed in
Graph Templates, add no signi�cant overhead to the data processing work�ow.

Integrator The purpose of the Integrator is to consult one or more streams of triples as
generated by the Triple Generator, in order to discover links between: a) resources18 in the
triples, or b) resources in the triples and resources at archival sources. In the �rst case, this
mechanism can be applied for deduplication tasks, in which case the links to be discovered are
owl:SameAs. In both cases, links can be identi�ed between a resource and other entities (e.g.
spatial areas of interest, spatio-temporal points or regions, etc.)

The component employs a set of �lters to select only those triples that are related to the
link discovery process. The �ltered triples are directed to a blocking mechanism (or a spatial
index for spatial relations) that detects a set of candidate related resources. The �nal step in the
process is the re�nement of candidates, which is performed using multi-threading, to discover
the related resources and return the corresponding triples

The integration depends on a mechanism that can decide whether two (or more) resources
should be linked by a speci�c relation. A naive approach where every resource in the �rst source
should be evaluated against every resource in the second source is ine�cient for data streams.
Thus, the �ltering, the blocking mechanism and parallel re�nement in this component drastically
improve performance. Blocking mechanisms and algorithms often vary, depending on the relation
to be discovered and the sources.

The con�guration of this component is crucial for the overall performance of the work�ow. A
link discovery component should generate high-quality links w.r.t. metrics such as precision and

18a resource is a distinguished entity that may appear in the object or subject position in any triple.

23



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

recall. This means that the sets of links generated should be correct (precision) and complete.

Triple Encoder This component is responsible for compressing the RDF triples produced by
the Triple Generator, in order to optimize the space consumption of the RDF encoded data.
For this purpose, a dictionary provides a mapping between URIs and unique identi�ers (integer
values), thus allowing the transformation of RDF triples into triples of integers. Apart from
compression, this technique also enables more e�cient indexing techniques, since integer values
can be indexed more e�ectively than strings. The encoded triples and the dictionary can �
in theory � be stored in another system that supports query processing facilities, such as a
relational DBMS. When an RDF store that uses internal encoding methods is used as target, the
Triple Encoder can be disabled, and RDF triples are produced in their original form. However,
both these alternatives (relational DBMS and centralized RDF store) are not viable solutions in
datAcron, due to scalability limitations.

In addition, the Triple Encoder is designed with a parametric assignment policy for unique
identi�ers. The simplest form of such a policy is to use integers and generate the next identi�er
by increasing the previously assigned identi�er by one. However, it is foreseen that other more
advanced policies can be plugged in. In our current implementation the Triple Encoder is a
centralized process which handles the output of multiple Triple Generators.

3.3.2 The Distributed Spatio-temporal RDF Store

The integrated data in datAcron need to be stored and e�ciently queried in order to support
various data analysis tasks. The choice of data storage depends on many di�erent parame-
ters, including data-dependent characteristics: the structure of the data, its volume, the rate of
generation, but also on query-dependent : namely the access patterns that need to be supported.

Data in datAcron are Big Spatio-temporal RDF data. The representation model is RDF, in
order to address the variety challenge present in the miscellaneous types of raw input data. The
volume of the data is vast and increasing every second, as new data arrive from the various input
streams. Also, there is a need for addressing the potentially high stream rate, which raises a
velocity challenge. Finally, a high percentage of the data is of spatio-temporal nature, describing
trajectories of moving objects, spatial or spatio-temporal areas of interest, events with spatio-
temporal dimensions, and other variables (e.g., meteorological, environmental, etc.) that have a
spatio-temporal validity.

On the other hand, di�erent data analysis tasks need to be supported over this integrated
data, including complex event detection, prediction of movement, pattern discovery, etc. In
addition, querying functionality is also necessary to support both one-time queries with �lters
over the data, as well as data exploration assisted by visual analytics.

All above requirements motivate the need and guide the design and development of a dis-
tributed spatio-temporal RDF store that additionally supports parallel data processing in order
to provide a scalable solution.

3.3.3 Interconnections

The Data Manager receives the following inputs in terms of data sources:

� external data (a.k.a. data-at-rest), in the form of archival data, that feeds the RDF store,
after data integration has been performed

� streaming data (a.k.a data-in-motion), apart from positional streaming data, which include
weather forecasts, �ight plans and updates thereof, regulations, which are integrated and
stored persistently

24



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

A signi�cant streaming data source is positional data of moving objects. This source is not
accessed directly by the Data Manager , but instead it is processed by the In-situ Processing
and the Synopses Generator components, which produce processed streams that are going to
be integrated and stored persistently. In more detail, Synopses Generator produces trajectory
synopses of positional data, both from maritime and aviation trajectory data, and this is the
main positional data that is integrated with the afore-described data sources. Moreover, In-situ
Processing detects low-level events associated with positions of moving objects, as close to the
data sources as possible. Such low-level events include single stream events, cross-stream events,
as well as events between a stream and contextual information. For instance, when a moving
object enters a spatial area of interest (e.g., a protected sea area or an air sector of interest), this
event is detected and given as input to the Data Manager for storage.

A �nal input source for Data Manager is analysis results produced by the di�erent compo-
nents that perform data analytics. Such results may include discovered patterns (e.g., clusters),
detected complex events, forecast events or trajectories, routes, as well as visual analytics results
of exploratory analysis. Again, these analysis results are integrated with existing data, prior to
storage. For instance, a discovered movement pattern followed by multiple moving objects is
associated with the trajectories of the moving objects that support the pattern.

In terms of outputs, Data Manager also produces a stream of integrated data (named inte-
grated stream) where any links discovered between entities or objects are provided to the other
components of the architecture in real-time.

Last, but not least, Data Manager o�ers querying functionality over the wealth of integrated
data. In essence, queries with various �lters are supported, including spatio-temporal constraints,
but also other parameters relevant to the input data.

3.4 Trajectory Detection and Prediction

The Trajectory Detection and Prediction component is internally composed of two main modules:
the Trajectory Predictor and the Data Analytics modules, which are responsible for computing
mining models and motion functions over trajectory synopses and RDF data in order to sup-
port semantic location and trajectory prediction, predictive queries and advanced analytics. It
achieves this objective by exploiting the past movements of moving objects and as well other re-
lated information (i.e. meteorological, contextual, etc.) to predict a moving object's anticipated
movement in short and long term. It exploits data mining, machine learning and data access
methods to assist the production of e�ective and scalable predictive analytics. As depicted in
Figure 8, the Trajectory Predictor and the Data Analytics components are tightly interconnected
(i.e. predictions usually rely on analytical models) consist of three modules:

� Location Predictor

� Local Model Extractor

� Data Analytics

3.4.1 Location Predictor

This component consists of two modules: a) the Continuous RMF Discovery module and b) the
Predictive Query Processing module.

25



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Figure 8: The Trajectory Detection and Prediction internal architecture.

The Continuous RMF Discovery module calculates motion functions by harvesting the most
recent locations from a moving object to predict its short-term future location in real time by
taking into consideration the tendency of the movement (i.e. linear, quadratic, curving, etc.).
This is realized by a recursive approach, titled as Recursive Motion Function (RMF), which takes
as input the motion state of a moving object along with the previous spatiotemporal instances
(i.e. locations and timestamps) and the motion matrix of the past movements. It then calculates
future object's locations with respect to its individual moving behavior. As the motion functions
progressively discover future locations for di�erent moving objects, the results will be available
in streaming fashion to other datAcron modules.

The Predictive Query Processing module is based on an indexing scheme and query processing
mechanism that is able to organize and e�ciently query the future states of moving objects. In
detail, this module will device novel encodings of not only the data as they are, but more
importantly their anticipated future locations and semantics. These encodings will be organized
in appropriate access methods so as to support predictive range queries (e.g. how many/which
aircrafts will be on Athens FIR the following ten minutes).

3.4.2 Local Model Extractor

This module is responsible for applying data mining (e.g. clustering and sequential patterns),
machine learning and statistical methods (e.g. Hidden Markov Models) on historical (semantic)
trajectories retrieved by the RDF store in order to extract patterns whose primary goal is to
facilitate long-term location and/or trajectory prediction. More speci�cally, the idea is that the
Location Predictor module consults the extracted patterns and decides whether it is preferable
to use the knowledge about the collective tendency of a group of moving objects encapsulated in
the pattern or the individual's short history results in more accurate predictions. The derived
models are envisaged to be stored/retrieved in/by RDF repository.

3.4.3 Data Analytics

The goal of this module is twofold: on the one hand it provides advanced analytics that are
going to serve specialized requirements in the datAcron architecture (e.g. data-driven discovery
of the networks upon which the movement of the vessels/aircrafts take place), while on the other
hand it provides global patterns that represent meta models devised from the patterns extracted

26



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

by the Local Model Extractor. As a concrete example of this case, consider that the patterns
extracted from the Local Model Extractor are sequential patterns, then a kind of global pattern
nay be a hierarchical organization (e.g. a tree) of these sequential patterns), which facilitates
e�cient predictive analysis. Again, the derived global models are to be stored/retrieved in/by
RDF repository.

3.5 Event Recognition and Forecasting

Figure 9: The architecture of the Event Recognition and Forecasting component.

The Event Recognition and Forecasting component consists of two modules.

� The �rst one concerns event recognition and forecasting. Its main sub-modules are the
following:

� A formal Complex Event Recognition engine which will consume streams (com-
pressed stream of critical points, enriched stream, and integrated stream) produced by
datAcron components and produce a stream of complex events. This engine currently
works in a �pull� mode, i.e., at each query step it collects the new critical points that
have arrived within a pre-de�ned temporal window. The Complex Event Recogni-
tion module is based on the �Event Calculus for Run-Time reasoning� [6]. The Event
Calculus is a logic programming action language. RTEC has a formal, declarative
semantics�Complex Event patterns in RTEC are (locally) strati�ed logic programs.
In contrast, almost all complex event processing languages and several data stream
processing languages lack a rigorous, formal semantics. Reliance on informal seman-
tics constitutes a serious limitation for maritime monitoring, where validation and
traceability of the e�ects of events are crucial. Moreover, the semantics of event query

27



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

languages and production rule languages often have an algebraic and less declarative
�avor.

� An Event Forecasting engine which will consume critical points and attempt to
provide predictions for the occurrences of events. This module works with sequence
patterns provided by the user as events of interest. The engine allows for patterns
de�ned by languages that are a subset of the regular languages. By embedding the
pattern into a Markov chain, it becomes possible to derive various statistics about it.
Of particular interest for the purposes of forecasting is the waiting time distributions,
i.e., the time required until the pattern is completed. Based on this distribution, pre-
dictions can be provided about the expected completion time of the provided pattern.

� An internal database holding the necessary contextual information, appropriately in-
dexed for the purposes of event recognition and forecasting. This information is asyn-
chronously fetched by the Data Manager and is e�ciently indexed, in order to support
the interactive processing time required by the real-time operations related to event
detection and forecasting.

� A spatial pre-processing module, responsible for a special class of spatial tasks, re-
quired by the recognition and forecasting engines. This refers to purpose-speci�c
spatial tasks for event detection and forecasting, which may not have already been
performed by any of the other components of the architecture.

� The second module will be that of Machine Learning, which is responsible for building
models that will be used for the internal operation of Event Recognition and Forecasting .
This module will work in o�-line mode and thus it will not a�ect the rest of the architecture.

Initially, the Event Recognition and Forecasting component will not have to interact with the
Data Manager during run-time in order to retrieve contextual information not present in the
stream of critical points and annotated trajectories (e.g., protected areas). Such information
will be retrieved beforehand and will be stored in a database internal to Event Recognition and
Forecasting .

Both the Event Recognition and the Event Forecasting modules will be developed in the
Scala programming language. In the future, distributed versions may be developed, based on
the Apache Flink stream processing platform.

3.6 Visual Analytics

The Visual Analytics (VA) component provides facilities for the visual exploration of data and
visual-interactive support for building and re�ning models and their parameter settings. It
therefore targets analysis experts working on the strategic level using data at rest, but may
in suitable cases also provide visualizations with limited interactivity on the tactical or even
operational level. Therefore as indicated in Figure 4, the VA component interacts with both the
analytical components for event and trajectory processing, as well as the Data Manager directly
for random access to historical data.

The purpose of the Visual Analysis approach is to combine algorithmic analysis with the
human analyst's insight and tacit knowledge in the face of incomplete or informal problem
speci�cations and noisy, incomplete, or con�icting data. Visual Analysis therefore is an iterative
process where intermediate results are visually evaluated to ascertain and inform subsequent

28



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

Figure 10: The Visual Analytics Loop supported by datAcron's VA component, adapted
from [12].

analysis steps based on prior knowledge and gathered insights. The underlying conceptual model
is the Visual Analytics Loop (adapted from [12], cf. Fig. 10). Speci�cally, it is worth noting that
due to the exploratory focus, VA does not prescribe a rigid pipeline of algorithmic processing
steps, nor does it prescribe a �xed composition of speci�c visualizations, as opposed to typical
KPI dashboards.

To cope with these requirements in an e�cient and scalable way, the Visual Analytics com-
ponent within the integrated datAcron architecture is itself of a modular, extensible design,
as shown in Figure 11. It comprises four principal component groups - data storage, analysis
methods, data �ltering and selection tools, and of course, visualization techniques. Di�erent
components are typically composed in an ad-hoc fashion, through visual-interactive controls, to
facilitate the work�ow required by the human analyst's task at hand. In particular, this allows
creating linked multiple views to simultaneously visualize complementary aspects of complex
data or analytical models. Figure 11 indicates by color marks matching colors from Figure 10
what components are typically involved in which phases of the VA loop.

The module architecture is a conceptual one. By integration of the VA module into the overall
datAcron architecture, functionality of the principal VA components is partially provided by
other datAcron components, notably, the Data Manager (Section 3.3), as well as the Trajectory
Detection and Prediction (Section 3.4) and Event Recognition and Forecasting (Section 3.5)
components.

3.6.1 Data Storage

The data storage component serves three functions. First, it provides an interface to the Data
Manager (Section 3.3). This allows read access to historical data, speci�cally, from the distributed
spatio-temporal RDF store, but may in certain cases also encapsulate direct access to other
intermediate storage, such as Cassandra or Hive data stores, if required for a given use case
scenario (cf. documents D5.3, D6.3). In cases where analysis results in data artifacts that are
worth persisting, for example interactively de�ned area boundaries, �typical� vessel trajectories,
or analytical models for later use such as spatio-temporal �ow graphs of aircraft, these are pushed
down to the Data Manager for long-term storage and retrieval.

Second, this component provides management of intermediate analysis results. This is nec-

29



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

essary as interactive analysis frequently requires data representations that are di�erent from
archival storage for e�ciency reasons, e.g. by denormalizing data kept in a relational schema.
In addition, the explorative and iterative nature of analysis often results in intermediate data
attributes that are almost immediately discarded for a re�ned result (e.g., cluster associations of
entities after interactive parameter changes to the algorithm). Such data is never persisted and
so is not handled by the distributed data store.

Third, ad-hoc analyses might often have the need to integrate external data not yet ingested
by the Data Manager . Typical examples include data and models generated by scripts or other
tools in standard formats (CSV �les, Shape �les, XML �les, or local databases) by an ana-
lyst. Enabling this loose, �le-based integration into the VA platform has proven essential in
maintaining �exibility and extensibility in terms of the analyst's tool capabilities.

3.6.2 Data Selection and Grouping

Similar to the data storage component, functionality of this module is divided between the
central Data Manager and the VA components internal selector module. Complex queries to
large historical or synopsis data are handed o� to the query engine of the distributed RDF store
(see Section 3.3.2).

One key feature of Visual Analytics, however, is the ability to directly manipulate data
and algorithm parameters through visual interaction. Therefore, interactive selection of data
elements across multiple views allows the analyst to de�ne complex, multi-faceted �lters on data
before analytical processing. An example is the simultaneous speci�cation of a geospatial region
in a map display, a speci�c time range from a time graph, and a subset of entities according to
some cluster visualization (e.g., see [5]). Such compound queries are mostly executed on the in-
memory representation held by the VA module's data storage component. Further investigation
of use case scenarios are expected to re�ne the understanding which such �lter conditions and
associated queries should be o�oaded to the central Data Manager , and which are more e�cient
as internal VA data storage operations.

Figure 11: The Visual Analytics module architecture with its principal components to support
the VA loop.

30



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

3.6.3 Analysis Methods

From the perspective of the Visual Analytics module, analysis methods fall into two main cate-
gories:

� in-stream processing algorithms that operate directly on data streams under prede�ned
parameter settings: synopses generation (Section 3.1), trajectory detection and prediction
(Section 3.4), event detection and forecasting (Section 3.5), and

� those applied in exploratory analysis on the strategic level: selection and parameter tuning
of algorithms prior to their application at operational (real-time) or tactical latency levels.

In case of the former, integration is indirect: the VA component may be used to observe the
impact of parameter changes on-line through a suitable user interface. This interface may be
provided by the VA component in selected cases, but supporting end users in operative level
settings is explicitly not the focus of Visual Analytics research or module development.

In the case of the latter, the VA component will facilitate the integration of a wide range
of algorithms by loose coupling on the level of tabular and graph-structured data handled by
the data storage component. The datAcron project can built on years of practical experience
building a similar, standalone framework for Visual Analytics.

3.6.4 Visualizations

Outwardly the core component of a visual analysis system, this component will provide the set
of interactive visualization techniques needed for � primarily exploratory � analysis. The �nal
set of visualizations is not prescribed at this point of time, however. Rather, it is derived from
use case requirements (see documents D5.3, D6.3), and is likely to involve research in designing
novel visualization techniques. Available visualizations are expected to include established base
techniques such layered map displays, time graph displays, but also specialized and complex
representations such as dynamic �ow graph visualizations that are one current focus of VA
research in datAcron. Similar to integrated analysis techniques, visualization technique will
be integrated on the level of internal data representation, i.e., based on how types of entities
and their attribute structure are mapped to speci�c visual encodings by a given visualization
technique.

31



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

4 Mapping the datAcron Architecture to Requirements

This section provides the necessary mapping between the architectural requirements identi�ed
in Deliverable D1.1 and the proposed datAcron system architecture outlined in Section 3. Es-
sentially, its objective is to answer the question �how are the requirements re�ected on the
architecture�, or, put di�erently, �how does the architecture address the requirements�.

To this end, in the following, we recall the architectural requirements (reported in D1.1), and
then proceed to explain the role of each individual component with respect to the requirements,
as well as how the combination of distinct components addresses the requirements whenever
necessary.

4.1 Architectural Requirements

The proposed architecture is in accordance with the analysis performed in Deliverable D1.1
(�Requirements Analysis�). In brief, in D1.1, the following issues were identi�ed:

� The data sources are multiple streaming data sources, as well as archival data sources.

� The in-situ processing components aim to compress and integrate where appropriate
data-in-motion from streaming sources in communication e�cient ways computing single
and multi-streaming data synopses at high rates of data compression � without a�ecting
the quality of analytics � capitalizing on low-level primitive operators (e.g. selections and
projections, joins to cater for cross-stream processing as close to the data as possible, etc)
that are applied directly on the data streams.

� The data transformation components aim to convert data in (a) single and multi-
streaming data synopses, (b) archival data and (c) results from the datAcron higher levels
analytics components to a common form.

� The data integration component interlinks semantically annotated data using link dis-
covery techniques for automatically computing correspondences between data from dis-
parate sources. This produces integrated data views, including data and their correspon-
dences. Integrated data are provided to the analytics components in real-time, while they
are also stored in parallel stores.

� The spatiotemporal query-answering component provides parallel query processing
techniques for spatio-temporal query languages. Interlinked data (processed and com-
pressed data-in-motion and linked data-at-rest) are stored in parallel RDF stores, using
sophisticated RDF partitioning algorithms in domain speci�c, spatial and temporal dimen-
sions.

� The data analytics components include trajectory and complex event recognition and
forecasting, as well as visual analytics. These consume the data provided by the data
integration component: Synopses computed by the bottom layer, being integrated (where
necessary) with archival data.

32



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

The data analytics components also use internal stores for frequent and fast data write/read,
well tuned to their requirements and to the rest of the architecture, so as to provide real-time
results.

Based on the above, Deliverable D1.1 de�ned a set of architectural requirements (cf. D1.1/Section
4), which are summarized below:

� R1.1: Real-time integration/interlinking of spatial and/or spatio-temporal entities

� R1.2: Interplay of in-situ and stream processing components

� R1.3: Integration/interlinking over stored data

� R1.4: Spatio-temporal RDF querying of integrated data

� R1.5: Retrieval of spatio-temporally constrained subsets of integrated data

� R2.1: Computation of trajectory similarity and clustering

� R2.2: Pattern discovery

� R2.3: Prediction of trajectories and locations

� R2.4: Computation of surveillance data synopses, reconstruction of trajectories by data
synopses

� R3.1: Event detection and forecasting in the maritime domain

� R3.2: Event detection and forecasting in the aviation domain

In the following, it is shown how the datAcron architecture (proposed in the current deliver-
able) covers these requirements.

4.2 Mapping datAcron Components to Requirements

Table 2 brie�y summarizes how each datAcron component is mapped to each of the eleven
requirements identi�ed in Deliverable D1.1. As will be documented in the sequel, this mapping
justi�es how the proposed architecture re�ects the architectural requirements of the project.

4.2.1 Synopses Generator

The Synopses Generator component receives raw surveillance data in a streaming fashion and
produces a compressed stream of �critical points�, after having discarded the many input surveil-
lance data that do not contribute useful information about the object's movement.

This component is going to address directly the requirement R2.4 (Computation of surveil-
lance data synopses, reconstruction of trajectories by data synopses), which is of major impor-
tance for the project, as most trajectory prediction and event forecasting models operate on these
synopses, rather than at the level of raw data.

33



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

4.2.2 In-situ Processing

In-situ Processing refers to stream processing near to the streaming sources, aiming at decen-
tralized processing per streaming source and minimal overhead to the component that integrates
the di�erent streams. As such, In-situ Processing plays a signi�cant role in the following require-
ments:

� R1.1 (Real-time integration/interlinking of spatial and/or spatio-temporal entities): In-situ
Processing facilitates this real-time interlinking task, by identifying low-level events that
trigger data interlinking as early as possible in the architecture. Representative examples
of the operation of In-situ Processing include the discovery of spatio-temporal relations
between surveillance data and various spatial or spatio-temporal regions of interest. Taking
an example from the aviation domain, a low-level event of interest is when a �ight enters (or
leaves) a sector. In the maritime domain, a corresponding low-level event is when a vessel
enters (or leaves) a protected area. By detecting these low level events as soon as possible,
the task of integration/interlinking is expedited and will be performed in real-time.

� R1.2 (Interplay of in-situ and stream processing components): In-situ Processing is able
to perform some stream processing operations near to the sources, for example low-level
event detection. More complex events are computed by other streaming components (e.g.,
Event Recognition and Forecasting component), but processing data near to the sources
has advantages such as reduced communication, lower latency, and reduced complexity of
the application, as explained in Section 3.2.

Component R1.1 R1.2 R1.3 R1.4 R1.5 R2.1 R2.2 R2.3 R2.4 R3.1 R3.2

Synopses Generator X

In-situ Processing X X

Data Manager X X X X

Data Integrator X X

Distributed RDF store X X

Trajectory Detection and Prediction X X X

Local Model Extractor X X

Location Predictor X X

Data Analytics X X X

Event Recognition and Forecasting X X

Visual Analytics X X X X X X X

Table 2: Mapping between requirements and architecture.

4.2.3 Data Manager

The Data Manager component performs two main tasks: (a) integration of data coming from
di�erent sources (both streaming and archival) into a common representation model, and (b)
distributed storage and parallel query processing over integrated spatio-temporal RDF data. In
this way, Data Manager contributes to the following requirements:

34



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

� R1.1 (Real-time integration/interlinking of spatial and/or spatio-temporal entities): All
streaming data that is going to be stored in datAcron is transformed in RDF and integrated
with other data in real-time. This real-time integration task is performed by the Data
Integrator module. For the real-time integration requirements, the main streaming data
source is surveillance data, which is integrated with weather and contextual data. The
output of the Data Integrator module is stored in the distributed RDF store, but also
streamed out in order to facilitate timely access by the other components of the architecture.

� R1.3 (Integration/interlinking over stored data): Another functionality o�ered by the Data
Integrator is to link trajectories and events, after they have been detected, with stored
data. This refers to the various analysis results (predicted trajectories, trajectory clusters,
detected or forecast events, etc.), which need to be stored and integrated with existing
data, in order to be available for subsequent analysis tasks or human interpretation.

� R1.4 (Spatio-temporal RDF querying of integrated data): One of the main responsibilities
of Data Manager is to enable access to the integrated RDF data by implementing query
processing algorithms and access methods. Several challenges are associated with providing
this querying functionality, in particular because of the distributed storage but also in order
to allow parallel data processing and scalability. To this end, the Data Manager will provide
query primitives and access methods for processing spatio-temporal RDF data at scale, thus
covering requirement R1.4.

� R1.5 (Retrieval of spatio-temporally constrained subsets of integrated data): This require-
ment can be viewed as part of R1.4, since it also entails querying the integrated data. How-
ever, the focus here is on the extraction of integrated datasets based on spatio-temporal
constraints. Essentially, the Data Manager component will provide access to integrated
data for a given spatio-temporal constraint, thus serving the data analytics components
with interlinked data, which is expected to facilitate improved predictions, complex event
detection, as well as visual analytics.

4.2.4 Trajectory Detection and Prediction

The Trajectory Detection and Prediction component is responsible for trajectory prediction and
analytics with respect to trajectories. Thus, it addresses the following architectural requirements:

� R2.1 (Computation of trajectory similarity and clustering): This is a basic building block
for higher level data analytics, including trajectory prediction. A fundamental operation
is computing the similarity of a pair of trajectories, which requires the speci�cation of a
similarity function. Di�erent choices for similarity functions do exist; others are de�ned
based only on the spatio-temporal positions of each trajectory, whereas others are semantic
similarity functions, which take into account additional information, as for example the
enriched information which is produced in datAcron. Capitalizing on appropriate trajectory
similarity functions, the component will also perform trajectory clustering in order to
discover popular �routes�, and to group trajectories based on various criteria.

� R2.2 (Pattern discovery): Another important part of data analytics is pattern discovery
with respect to trajectories. Essentially, the objective here is to identify sets of trajectories
that show similar behavior. Identifying such movement patterns from historical data is
particularly signi�cant, as it may assist in the characterization of trajectories in real-time,
as long as a trajectory can be classi�ed to belong to a discovered pattern. This component
is going to discover movement patterns as speci�ed by the requirement R2.2.

35



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

� R2.3 (Prediction of trajectories and locations): Last, but not least, this component will
perform prediction of trajectories and future locations. In the case of trajectory prediction,
the aim is to predict the future movement of the object either in the short-term or in the
long-term. In the case of location prediction, the objective is to identify the location
(not necessarily the complete movement) of a moving object at some time in the future.
Both predictions are going to be supported by the Trajectory Detection and Prediction
component.

4.2.5 Event Recognition and Forecasting

The Event Recognition and Forecasting component targets the need to detect and forecast com-
plex events related to the movement of moving objects.

� R3.1 (Event detection and forecasting in the maritime domain): The �rst task is to identify
events of interest with respect to areas, vessels and trajectories in the maritime domain.
With respect to vessels, the goal is to identify a vessel's characteristics, such as its type or
whether it has been black-listed. With respect to areas, the goal is to identify areas with
high �shing pressure. In order to achieve this, we �rst need to characterize the trajectories
of vessels moving in such areas, e.g. determining whether a vessel is actively �shing.

� R3.2 (Event detection and forecasting in the aviation domain): The second task is event
detection and forecasting in the aviation domain. With respect to �ow management, the
goal is to predict regulations that need to be imposed, detect a�ected �ights and detect ca-
pacity/demand imbalances. With respect to �ight planning, the goal is to detect a number
of signi�cant events for an aircraft's trajectory, such as: Terminal Boundary Crossing Point,
Hold Entry, Hold Exit, Fly-by, Fly-over, STAR Entry, SID Entry, Aircraft not following
planned route.

4.2.6 Visual Analytics

The Visual Analytics component aims at exploratory and interactive analysis of data, in order to
enable the task of human interpretation, which is necessary in the case of Big Data. As explained
also in D1.1, visual analytics does not represent a single, speci�c analysis technique but rather
a methodological approach to gain insight into large, complex, noisy and often con�icting data,
to develop and test hypotheses, and to build and understand complex analytical models. The
key aspect is the collaborative work between the computer and the human analyst, whereby
the human expert imparts background knowledge about the current analysis task's context and
reasoning on the overall analytical process.

As such, the Visual Analytics component expands upon automated analyses developed and
applied in the context of Trajectory Detection and Prediction and Event Recognition and Forecast-
ing . Therefore, visual analytics approaches will operate on the same data types and structures
identi�ed for the afore-described components. This includes the raw data and enriched data as
applicable for model building, as well as analytical models and their current parameterizations
for model understanding, veri�cation, and re�nement.

36



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

5 The datAcron Software Architecture

This section describes the software architecture that realizes the datAcron prototype system, in
terms of software modules and their interactions. The contents of this section are subject to
re�nements during the next months, and eventually the concrete software design is going to be
documented in deliverables D1.6 �Software Design (interim)� and D1.11 �Software Design (�nal)�,
which are due on months 18 and 30 respectively.

As a starting point, there is a clear separation between batch processing and real-time process-
ing in datAcron. Both data processing alternatives are supported by the datAcron architecture
and accommodate di�erent use-case scenarios.

Input 
streams

Data
Integrator

RDF Store

Data Processing

Batch Processing

Event 
Forecasting

Trajectory 
Prediction

Visual 
Analytics

Analysis 
Results

Figure 12: Batch processing.

5.1 Batch Processing

Batch processing (Figure 12) refers to the Data Manager component, which provides access to
integrated data, both historical and fresh data. However, there is an unavoidable gap between
real-time data and fresh data, due to sheer volume of data handled by the Data Manager and
the induced latency for integrating the streaming data with the historical data. As such, it is
expected that Data Manager provides access to data up to a certain time point in the near past,
whereas the most recent data is handled in a streaming fashion. Eventually, this streaming data
will update the data stored in Data Manager .

On top of the Data Manager component, other datAcron components operate and perform
long-running analysis tasks. For example: the Trajectory Detection and Prediction component
performs processing-intensive analytics tasks o�ine, such as clustering, classi�cation, or others;
the Event Recognition and Forecasting component analyzes historical data to identify patterns of
events; the Visual Analytics component retrieves data in order to facilitate interactive analysis,
data exploration and visualization tasks. All afore-described analysis tasks translate to batch
processing over subsets of the historical data available in datAcron, and do not necessarily require
the most recent data that arrived in the system.

37



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

At the time of this writing, the state-of-the-art solution for batch processing is Apache
Spark [31, 33]. This framework will be adopted in datAcron in order to develop the batch
processing functionality. In the following, it is described how Spark is going to be extended,
in order to accommodate the needs and peculiarities associated with processing and analyzing
trajectory data represented in RDF.

5.1.1 Processing Spatio-temporal RDF Data in Apache Spark

In datAcron, all incoming data is integrated in RDF, in compliance with the datAcron ontology.
However, due to application domains, the data have a strong spatio-temporal �avour, meaning
that the majority of the represented RDF resources correspond to spatial or spatio-temporal
objects (positions of moving objects, regions of interest, point of interest, weather variables,
etc.). Therefore, the need is raised to e�ciently manage this spatio-temporal RDF data and
provide query processing mechanisms.

Existing prototype systems that extend Spark mainly focus either on spatial data [27, 28, 29]
only or on RDF processing [19]. In datAcron, the spatio-temporal nature of the data combined
with the RDF representation poses new challenges for e�cient data management and parallel
processing, which go well beyond the state-of-the-art in the �eld. Put di�erently, using existing
implementations of spatial operations and RDF operations is going to lead to inferior perfor-
mance, as this approach cannot harness the merits of combining spatial and RDF processing at
the same time. As an indicative example, better processing performance can be achieved when
pruning the underlying data using both spatio-temporal and RDF �ltering at the same time,
while the alternative is to perform each �ltering individually and then merge the results, which
will clearly lead to wasteful processing. One of the core research contributions in datAcron is to
extend Spark by providing a library that manages spatio-temporal RDF data in an holistic way.
This extension is depicted in Figure 12 as a layer named Data Processing operating on top of
the RDF store.

5.1.2 Distributed Storage of Spatio-temporal RDF Data

In addition, the RDF storage functionality is going to be developed by designing and imple-
menting a distributed spatio-temporal RDF store, where di�erent alternatives with respect to
physical organization of data are going to be examined. To this end, we are going to revisit ex-
isting approaches for RDF storage in order to identify their weaknesses and limitations, thereby
proposing the storage method that best �ts the needs of datAcron.

Alternatives for RDF storage, inspired by relational databases, include �one triples table� [18]
where all triples are stored in a single table, property tables [25] where subjects with common
predicates are grouped in the same table, vertical partitioning [1] where a two-column table is
created for each property, and extended vertical partitioning [19] where additional information
on which subjects are joined to objects is materialized, in order to speed up processing by trading
o� space for execution time.

Such methods for RDF storage are going to be studied meticulously under the prism of
spatio-temporal data and also in the context of NoSQL storage systems. This will lead to the
design of distributed RDF store for spatio-temporal data that additionally provides primitive
query operators for parallel data processing. This is another extension of Spark that is going to
be provided in datAcron.

38



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

5.2 Real-time Processing

Real-time processing (Figure 13) refers to all operations in datAcron that need to be performed
in real-time at operational latency. This dictates access to the following streams that �ow in the
system, including:

� the raw stream of positions of moving objects (input to the datAcron architecture)

� the stream of trajectory synopses (generated by Synopses Generator)

� the stream of events (generated by In-situ Processing)

� the stream of integrated position data with data from other sources (generated by Data
Manager)

Moreover, the analysis results of every component are also provided in the form of output streams
from each component respectively, so that they can be consumed by any other component of the
system.

In order to develop the necessary real-time processing in datAcron, in compliance with the
architecture of Figure 4, two main functionalities are required: (a) stream processing, and (b)
stream-based communication.

Data
Integrator

Event 
Forecasting

Trajectory 
Prediction

Visual 
Analytics

Input 
streams

In-situ 
Processing

Synopses 
Generator

Real-time Processing

Predicted 
trajectories

Forecast 
events

Visual 
patterns

Figure 13: Real-time processing.

5.2.1 Stream Processing

Multiple operations in datAcron are performed on streaming data: the generation of trajectory
synopses, data integration, event detection (low-level events and complex events), trajectory
prediction, event forecasting, and real-time (interactive) visual analytics. The majority of these
operations must be performed in near real-time, respecting the requirements for operational
latency.

Based on the overview of Section 2, and taking into account the requirements for stream
processing of the datAcron components, Apache Flink is going to be used primarily for im-
plementing stream processing functionality. However, this does not exclude the usage of other
stream processing frameworks (e.g., Kafka streams) for speci�c components of datAcron, if such
a need arises.

39



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

5.2.2 Stream-based Communication

To support di�erent stream-based functionality, components in datAcron need an interconnection
infrastructure, since typically the operation of one component may rely on the output of another
component. In order to support �exible interconnection and communication between components
without imposing a rigid architecture, we opt for a loosely-coupled architecture for datAcron,
which has the additional advantage that di�erent components can be developed using di�erent
technologies.

In particular, all outputs of components are streamed out, thus allowing any other compo-
nent to connect to any output stream(s) and have access to its content. In technical terms,
datAcron adopts the use of Apache Kafka as messaging system to implement the interconnection
infrastructure necessary to support our loosely-coupled architecture.

5.3 Combining Batch with Real-time Processing

In addition, applications in datAcron may require a combination of data from real-time and
historical. In this case, data from real-time processing are going to �ll the missing data (the latest
data) from the batch processing and analysis. In this sense, the datAcron software architecture
resembles the Lambda architecture [14]. One challenge is how to combine the results of batch
processing (batch views) with the real-time processing results (real-time views), in particular
because these results are not necessarily simple aggregates, but may require some additional
processing in order to be merged before being ready for presentation to the end user.

Trajectory 
Prediction

Event 
Detection & 
Forecasting

Visual Analytics

Data Processing 

Data Store

Figure 14: The datAcron software stack.

5.4 Software Modules

Figure 14 shows the datAcron software stack for realizing the advanced data analytics tasks
necessary for forecasting trajectories and events. The software stack contains the following main
modules, from bottom to the top:

� The Data Store

40



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

� Data processing

� Trajectory detection and prediction

� Event detection and forecasting

� Visual analytics

In more detail, right above the level of the data store, there exists a data processing layer
whose role is to provide primitive operations for data access, thereby facilitating data fetching
and retrieval that is going to support the advanced analytics. As such, all analytics can use the
facilities provided by the data processing layer. Then, two separate modules realize the trajectory
prediction and event detection and forecasting. These modules exploit the capabilities o�ered by
the data processing layer, in order to e�ciently load the necessary data for the subsequent data
analysis tasks.

Moreover, the visual analytics layer plays multiple roles, both by interacting with the data
processing layer as well as the analytics layers. In the former case, when exploratory visual
analytics is performed, access to the underlying data must be directly provided, possibly over
multiple requests and data retrieval operations, in order for the user to e�ectively discover what
she is looking for. In the latter case, visual analytics interplays with the other analytics modules
(trajectory prediction and event forecasting) in order to facilitate the exploration, parameteriza-
tion, and validation by the end users of patterns, models, events, and trajectories discovered.

41



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

References

[1] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hollenbach. Scalable
semantic web data management using vertical partitioning. In Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB), pages 411�422, 2007.

[2] Divyakant Agrawal, Philip Bernstein, Elisa Bertino, Susan Davidson, Umeshwar Dayal,
Michael Franklin, Johannes Gehrke, Laura Haas, Alon Halevy, Jiawei Han, H.V. Jagadish,
Alexandros Labrinidis, Sam Madden, Yannis Papakonstantinou, Jignesh M. Patel, Raghu
Ramakrishnan, Kenneth Ross, Cyrus Shahabi, Dan Suciu, Shiv Vaithyanathan, and Jennifer
Widom. Challenges and opportunities with big data � a community white paper developed
by leading researchers across the united states. Technical report, March 2012.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael Fernández-
Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric Schmidt, and
Sam Whittle. The data�ow model: A practical approach to balancing correctness, latency,
and cost in massive-scale, unbounded, out-of-order data processing. PVLDB, 8(12):1792�
1803, 2015.

[4] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag, Fabian
Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, Felix Naumann,
Mathias Peters, Astrid Rheinländer, Matthias J. Sax, Sebastian Schelter, Mareike Höger,
Kostas Tzoumas, and Daniel Warneke. The stratosphere platform for big data analytics.
VLDB J., 23(6):939�964, 2014.

[5] Gennady L. Andrienko, Natalia V. Andrienko, Christophe Claramunt, Georg Fuchs, and
Cyril Ray. Visual analysis of vessel tra�c safety by extracting events and orchestrating
interactive �lters. In Proceedings of Maritime Knowledge Discovery And Anomaly Detection
Workshop (MKDAD), 2016.

[6] Alexander Artikis, Marek J. Sergot, and Georgios Paliouras. An event calculus for event
recognition. IEEE Trans. Knowl. Data Eng., 27(4):895�908, 2015.

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache �ink�: Stream and batch processing in a single engine. IEEE Data Eng.
Bull., 38(4):28�38, 2015.

[8] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):4, 2008.

[9] Christos Doulkeridis and Kjetil Nørvåg. A survey of large-scale analytical query processing
in mapreduce. VLDB J., 23(3):355�380, 2014.

[10] Wissem Inoubli, Sabeur Aridhi, Haithem Mezni, and Alexander Jung. Big data frameworks:
A comparative study. arXiv preprint arXiv:1610.09962, 2016.

[11] H. V. Jagadish, Johannes Gehrke, Alexandros Labrinidis, Yannis Papakonstantinou, Jig-
nesh M. Patel, Raghu Ramakrishnan, and Cyrus Shahabi. Big data and its technical chal-
lenges. Commun. ACM, 57(7):86�94, 2014.

42



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

[12] Daniel A. Keim, Gennady L. Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn Kohlham-
mer, and Guy Melançon. Visual analytics: De�nition, process, and challenges. In Proceed-
ings of Information Visualization - Human-Centered Issues and Perspectives, pages 154�175.
2008.

[13] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg,
Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter Heron:
Stream processing at scale. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 239�250, 2015.

[14] Nathan Marz and James Warren. Big Data: Principles and best practices of scalable realtime
data systems. Manning Publications Co., 2015.

[15] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geo�rey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: Interactive analysis of web-scale datasets. PVLDB,
3(1):330�339, 2010.

[16] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geo�rey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. Dremel: interactive analysis of web-scale datasets. Commun.
ACM, 54(6):114�123, 2011.

[17] Xiangrui Meng, Joseph K. Bradley, Burak Yavuz, Evan R. Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, D. B. Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold
Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: Machine
learning in Apache Spark. CoRR, abs/1505.06807, 2015.

[18] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable management of
RDF data. VLDB J., 19(1):91�113, 2010.

[19] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg Lausen. S2RDF:
RDF querying with SPARQL on Spark. PVLDB, 9(10):804�815, 2016.

[20] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang, Berthold Reinwald,
and Fatma Özcan. Clash of the Titans: MapReduce vs. Spark for large scale data analytics.
PVLDB, 8(13):2110�2121, 2015.

[21] Swaminathan Sivasubramanian. Amazon dynamoDB: a seamlessly scalable non-relational
database service. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pages 729�730, 2012.

[22] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthikeyan Ramasamy, Jignesh M. Patel,
Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham, Nikunj Bhagat,
Sailesh Mittal, and Dmitriy V. Ryaboy. Storm@twitter. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 147�156, 2014.

[23] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasivam, Mammad Zadeh,
Neha Narkhede, Jun Rao, Jay Kreps, and Joe Stein. Building a replicated logging system
with Apache Kafka. PVLDB, 8(12):1654�1655, 2015.

[24] Tom White. Hadoop: The de�nitive guide. O'Reilly Media, Inc., 2012.

[25] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds. E�cient RDF storage
and retrieval in Jena2. In Proceedings of the First International Workshop on Semantic Web
and Databases (SWDB), pages 131�150, 2003.

43



D1.2 Architecture Speci�cation H2020-ICT-2015 30/12/16

[26] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica. GraphX: a resilient
distributed graph system on Spark. In Proceedings of the First International Workshop on
Graph Data Management Experiences and Systems (GRADES), page 2, 2013.

[27] Simin You, Jianting Zhang, and Le Gruenwald. Spatial join query processing in cloud: Ana-
lyzing design choices and performance comparisons. In Proceedings of the 44th International
Conference on Parallel Processing Workshops (ICPPW), pages 90�97, 2015.

[28] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. GeoSpark: a cluster computing framework for
processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 70:1�70:4, 2015.

[29] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. A demonstration of GeoSpark: A cluster com-
puting framework for processing big spatial data. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE), pages 1410�1413, 2016.

[30] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the USENIX
conference on Networked Systems Design and Implementation (NSDI), pages 2�2, 2012.

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX Workshop
on Hot Topics in Cloud Computing, 2010.

[32] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Stoica. Discretized
streams: An e�cient and fault-tolerant model for stream processing on large clusters. In
Proceedings of the 4th USENIX Workshop on Hot Topics in Cloud Computing, 2012.

[33] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. Apache Spark: a uni�ed engine for big data processing.
Commun. ACM, 59(11):56�65, 2016.

44


	HISTORY OF CHANGES
	EXECUTIVE SUMMARY
	TABLE OF CONTENTS
	TERMS & ABBREVIATIONS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Purpose and Scope
	Approach for the Work package and Relation to other Deliverables
	Methodology and Structure of the Deliverable

	Overview of Technological Solutions
	Message Bus
	Apache Kafka

	Data Storage
	The Hadoop Distributed File System (HDFS)
	Cassandra
	Apache Hbase
	Pivotal GemFire and Apache Geode

	Batch Processing
	Apache Hadoop
	Apache Spark

	Stream/Real-time Processing
	Apache Storm and Heron
	Spark Streaming
	Apache Flink
	Kafka Streams
	Comparison

	Combining Batch with Real-time Processing
	Lambda Architecture
	Kappa Architecture

	Data Serialization
	Avro
	Parquet

	Recommendations for the datAcron Architecture
	datAcron Data Management Architecture
	Batch Processing
	Stream Processing
	Data Storage
	Data Serialization


	The datAcron Integrated System Architecture
	Synopses Generator
	In-situ Processing
	Data Manager
	Data Integrator
	The Distributed Spatio-temporal RDF Store
	Interconnections

	Trajectory Detection and Prediction
	Location Predictor
	Local Model Extractor
	Data Analytics

	Event Recognition and Forecasting
	Visual Analytics
	Data Storage
	Data Selection and Grouping
	Analysis Methods
	Visualizations


	Mapping the datAcron Architecture to Requirements
	Architectural Requirements
	Mapping datAcron Components to Requirements
	Synopses Generator
	In-situ Processing
	Data Manager
	Trajectory Detection and Prediction
	Event Recognition and Forecasting
	Visual Analytics


	The datAcron Software Architecture
	Batch Processing
	Processing Spatio-temporal RDF Data in Apache Spark
	Distributed Storage of Spatio-temporal RDF Data

	Real-time Processing
	Stream Processing
	Stream-based Communication

	Combining Batch with Real-time Processing
	Software Modules


