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EXECUTIVE SUMMARY

This report comprises the eleventh deliverable (D1.11) of datAcron work package 1 “System archi-
tecture and data management” with main objective to describe the software design in datAcron,
in accordance with the requirements specified in deliverable D1.1 and the architecture specified
in deliverable D1.2.

The task has two iterations. The result of the first iteration has been documented in the
interim deliverable D1.6. Its focus was on fast prototyping and testing of the software archi-
tecture, aiming at providing valuable experiences as well as software components towards the
second iteration.

This deliverable presents the results of the second iteration of software design, reporting
the final design of the datAcron prototype, along with the provided information flows. All
implemented flows required software integration of the different components developed in the
context of the technical work packages WP1, WP2, WP3, and WP4.

In summary, the software design reported in D1.6 has been confirmed in the second phase
of the project and no major re-design was needed, hence the deliverable has not changed sub-
stantially. Consequently, the main changes of the current deliverable with respect to its interim
version are the following:

• We elaborate on the design and implementation of the distributed RDF storage and process-
ing engine, which comprises the batch processing part of the datAcron big data architecture,
which was still immature on M18.

• We report on the design and implementation of offline data analytics, in particular those
related to trajectory analytics and visual analytics, which were not reported on M18.
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1 Introduction

This document is the deliverable D1.11 “Software design (final)” of work package 1 “System
Architecture and Data Management” of the datAcron project. It defines the datAcron software
design with respect to the datAcron architecture and its software modules.

The interim version of D1.11 was reported as D1.6, which was delivered on M18. The focus on
D1.6 was to provide the software design at the middle of the project’s lifetime, thus facilitating
early prototyping and testing. Also, in D1.6, valuable experiences were recorded, which have
been taken into consideration towards the second iteration.

In more detail, at the first iteration, we provided an integrated prototype that implements
basic functionality and contains modules from work packages WP2–WP4, focusing mainly on
stream processing in real-time and online analytics, and leaving the part of batch processing and
offline analytics for the period after M18.

In this final version of the deliverable: (a) the design and implementation of the stream
processing part of the architecture has been finalized, after having been confirmed, and (b)
we report on the design and implementation of the batch processing and analysis part of the
architecture, which was still immature on M18.

1.1 Purpose and Scope

The “Software design (final)” describes the overall design of the integrated datAcron prototype,
along with details about the individual modules, and their interconnections. The integrated
prototype has been designed as a Big Data system, and has been implemented using state-of-
the-art Big Data frameworks and technologies, most notably Apache Flink, Apache Spark, and
Apache Kafka.

In summary, the prototype offers the following functionality:

• Real-time consumption of raw surveillance data streams, on which the following operations
are performed:

– In-situ processing, including low-level event detection (WP1) and synopsis genera-
tion(WP2)

– Data transformation to RDF, as well as semantic integration with weather and con-
textual data sources (WP1)

– Future location and trajectory prediction (WP2)

– Complex event detection and forecasting (WP3)

– Real-time visualization (WP4).

• Querying integrated RDF data using the distributed RDF engine developed in datAcron,
demonstrating the feasibility of batch processing (WP1).

• Advanced offline analytics on integrated data extracted from the distributed RDF store,
including trajectory analytics and visual analytics.

1
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Deliverable D1.11 is submitted on month M30 of the project reporting the design and imple-
mentation of the datAcron prototype, which integrates results from all technical work packages,
and demonstrates the feasibility of realizing the datAcron scientific and technical objectives.
Thus, the deliverable reports on the modules that have been developed, as well as the Big
Data technologies adopted for processing (Apache Flink and Apache Spark) and communica-
tion (Kafka). Most importantly, this deliverable presents the successful interconnection of the
different individual modules in a coherent integrated platform.

1.2 Approach for the Work package and Relation to other Deliverables

D1.11 extends the interim deliverable D1.6. Also, D1.11 is based on D1.2 “Architecture Specifica-
tion” delivered in M12, as it builds on and refines D1.2 into a more concrete software architecture,
taking also into account the features offered by the technological solutions adopted. Specifically,
D1.11 refines the datAcron architecture in a more concrete software architecture and delivers an
integrated software prototype as proof-of-concept, which realizes critical flows of information in
datAcron. Furthermore, D1.11 presents the two main software layers: the real-time processing
layer and the batch processing layer.

It should be pointed out that D1.11 is prepared during the same time that deliverables
D1.8 “Cross-streaming data processing (final)”, D1.9 “Data Integration, Management (final)”,
and D1.10 “Data storage and querying (final)” are prepared. Deliverables D1.8 and D1.9 provide
detailed description on real-time layer of the datAcron architecture. Also, D1.10 presents the
batch processing solution developed in the context of datAcron, which comprises of a distributed
RDF engine for scalable processing of spatio-temporal RDF data. As such, they connect to this
deliverable, and intermediate versions of D1.8, D1.9 and D1.10 have been considered during the
preparation of the current deliverable.

1.3 Methodology and Structure of the Deliverable

In terms of work methodology, this deliverable takes as input D1.2 “Architecture Specification”
and refines it in order to become a more concrete software architecture design, which is able
to combine the individual modules developed in datAcron. During the project, we have been
in close collaboration with partners in WP2, WP3, and WP4, that develop their solutions and
prototype implementations, in order to provide specific guidelines on the technology used for
inter-communication of modules, and for coordinating and orchestrating the development ac-
tivities. As a result, our adopted methodology resembles agile software development, since our
main focus was on early prototyping (for the first iteration) and continuous improvement and
response to changes (for the second iteration). Consequently, we are able to present the design
and implementation of an integrated prototype, and we refer to D1.12 “Integrated prototype
(final)” for this.

The remaining of this report is structured as follows:

• Section 2 overviews the datAcron architecture, as reported in D1.2, in terms of modules
and their interactions, thus resulting in the refined datAcron architecture. Also, it explains

2
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how it connects to the Big Data Analysis pipeline, and presents the two main layers: the
real-time processing layer and the batch processing layer.

• Section 3 presents the software design of the integrated prototype of datAcron, focusing
on flows of information and the architecture that encompasses all envisioned flows and
modules.

• Section 4 provides details on the implementation of the different flows of information,
focusing also on modules’ interaction and respective inputs/outputs.

• Section 5 summarizes the work reported in this deliverable.

Finally, in the Appendix A, details are provided with respect to the datAcron cluster, the platform
where we deploy the datAcron prototype for testing and experimentation.

3
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2 The datAcron Integrated System Architecture

In this section, we briefly recall the system architecture specified in deliverable D1.2 of the
project on M12. First, we describe the major steps in Big Data Analysis (Section 2.1), and then
we present the overall datAcron architecture, its inputs, outputs, and modules (Section 2.2);
moreover, we connect the individual modules to steps of Big Data Analysis, thus positioning
them in this pipeline and illustrating their exact role. Finally, we describe the two constituent
layers of the datAcron architecture: the Batch Layer, which is responsible for distributed storage
and efficient querying of integrated spatio-temporal RDF data (Section 2.3), and the Real-time
Layer, which involves all streaming operations and online analytics performed in the stream of
information available in datAcron (Section 2.4).

2.1 Major Steps in Big Data Analysis

The project datAcron aims at recognizing and forecasting complex events and trajectories from a
wealth of input data, both data-at-rest and data-in-motion, by applying appropriate techniques
for Big Data analysis. The technical challenges associated with Big Data analysis are manifold,
and perhaps better illustrated in [1, 3], where the Big Data Analysis Pipeline is presented.

Acquisition/ 
Recording

Extraction/ 
Cleaning/

Annotation

Integration/ 
Aggregation/ 

Representation

Analysis/ 
Modeling

Interpretation

Figure 1: Major steps in analysis of Big Data.

As depicted in Figure 1, five major phases (or steps) are identified in the processing pipeline.
Below, we explain the datAcron activities and research challenges related to each of these phases,
thus clearly showing how datAcron connects to the phases of the Big Data Analysis pipeline:

1. Data Acquisition and Recording: Large volumes of data are created in a streaming
fashion, including surveillance data, weather forecasts, and other contextual data, which
need to be consumed in datAcron. One major challenge is to perform online filtering of
this data, in order to keep only the necessary data that contain the useful information. To
this end, we apply data summarization techniques on surveillance data, thus keeping only
the “critical points” of a moving object’s trajectory, which signify changes in the mobility
of the moving object. This compression technique achieves data reduction rate above 90%,
without compromising the quality of the compressed trajectories. In addition, in datAcron,
we have to deal with archival data sources (data-at-rest), which also need specialized data
connectors depending on the provided input format.

Another challenge in the data acquisition phase is to push computation to the edges of the
Big Data management system. We perform online data summarization of surveillance data
on the input stream directly, as soon as it enters the system. Moreover, we employ in-situ

4
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processing techniques, near to the streaming data sources, in order to identify low-level
events, such as monitoring the entrance/leave of moving objects in specific areas of interest
(such as protected marine areas).

2. Information Extraction and Cleaning: In datAcron, miscellaneous data in various
formats are provided to the system for processing and analysis. A basic prerequisite for
the subsequent analysis tasks is to extract the useful data and transform it in a form that
is suitable for processing. As a concrete example, weather forecasts are provided as large
binary files (GRIB format), which cannot be effectively analyzed. Therefore, we extract
the useful meteorological variables from these files together with their spatio-temporal
information, so that they can be later associated with mobility data.

In addition, surveillance data are typically noisy, contain errors, and are associated with
uncertainty. Data cleaning techniques are applied in the streams of surveillance data,
in order to reconstruct trajectories with minimum errors that will lead to more accurate
analysis results with higher probability. Indicative examples of challenges addressed in
this respect include handling delayed surveillance data, dealing with intentional erroneous
data (spoofing) or hardware/equipment errors. Moreover, is the aviation domain, surveil-
lance data may come from different streaming sources, and cross-streaming processing is
required, which raises additional challenges related to joining multiple streams in an online
manner. Also, with respect to data-at-rest, the involved challenges also include cleaning
and extracting useful information using an RDFization approach.

3. Data Integration, Aggregation, and Representation: After having addressed data
cleaning, the next challenge is to integrate the heterogeneous data coming from various data
sources, in order to provide a unified and combined view. Our approach is to transform and
represent all input data in RDF, following a common schema (ontology) that is designed
purposefully to accommodate the different data sources. However, data transformation
does not suffice by itself. To achieve data integration, we apply online link discovery
techniques in order to interlink streaming data from different sources, a task of major
significance in datAcron.

By means of link discovery, we derive enriched data representations across different data
sources, thereby providing richer information to the higher level analysis tasks in datAcron.
We refer to Deliverable D1.9 “Data Integration, Management (final)” for details on the
various types of link discovery considered in datAcron.

4. Query Processing, Data Modeling, and Analysis: Another Big Data challenge ad-
dressed in datAcron relates to scalable processing of vast-sized RDF graphs that encompass
spatio-temporal information. Towards this goal, we design and develop a parallel spatio-
temporal RDF processing engine on top of Apache Spark. Individual challenges that need
to be solved in this context include RDF graph partitioning, implementing parallel query
operators that shall be used by the processing engine, and exploiting the capabilities of
Spark in the context of trajectory data. We refer to Deliverable D1.10 “Data storage and
querying (final)” for more details on this.

Complex event detection is also performed in datAcron, where the objective is to detect
events related to the movement of objects in real-time. Last, but not least, particular
attention is set towards predictive analytics, namely trajectory prediction and event fore-
casting. Both short-term and long-term predictions are useful depending on the domain,
and in particular for maritime, a hard problem is to perform long-term prediction. We
distinguish between location prediction (where a moving object will be after X time units)

5
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and trajectory prediction (what path will a moving object follow in order to reach position
X).

5. Interpretation: To assist the task of human-based interpretation of analysis results, as
well as the detection of patterns that may further guide the detection of interesting events
– tasks that are fundamental for any Big Data analysis platform – datAcron relies on
visualizations and visual analytics. By means of those tools, it is possible to perform visual
and interactive exploration of data and trajectories of moving objects, visualize aggregates
or data summaries, and ultimately identify trends or validate analysis results that would
be hard to find automatically.

Thus, the connection between the datAcron architecture and the Big Data Analysis pipeline, as
well as the activities related to the different phases of Big Data analysis should be clear, based
on the above discussion.

Figure 2: Overview of the datAcron architecture and its constituent modules.

2.2 Overview of the datAcron Architecture

2.2.1 Modules

At a high-level, the datAcron architecture is composed of the following six main modules, as
reflected in the description provided in deliverable D1.2 and also depicted in Figure 2:

• In-situ Processing : This module is responsible for executing processing tasks, such as
detection of low-level events, on the premise of the actual streams.

• Synopses Generator : Its main role is to provide the algorithms for trajectory compres-
sion, by eliminating many positions of moving objects that do not significantly affect the
quality of the representation.

6
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• Data Manager : The data management module stores integrated data, produced by
integrating data-at-rest with data-in-motion, as well as analysis results from other modules,
and provides querying functionality on top of a unified view of data, due to the data
integration. Persistent storage and querying of integrated data is provided by means of a
distributed RDF store, which is a module maintained by the Data Manager .

• Trajectory Detection and Prediction : This module performs trajectory prediction,
both in real-time and offline, as well as advanced data analytics related to moving objects.

• Event Recognition and Forecasting : This module is responsible for detection and
forecasting of complex events related to the mobility of objects.

• Visual Analytics: The exploratory data analytics module provides visualization facilities
as well as the opportunity to explore different values for the parameters of the algorithms
and provide better models for the event detection and trajectory prediction modules.

datAcron module Step in Big Data Analysis

In-situ Processing Data Acquisition and Recording, Information Extraction and Cleaning

Synopses Generator Data Acquisition and Recording, Information Extraction and Cleaning

Data Manager Data Integration, Aggregation, and Representation, Query processing

Trajectory Detection and Prediction Data Analysis

Event Recognition and Forecasting Data Analysis

Visual Analytics Data Analysis, Interpretation

Table 1: The modules in the datAcron integrated prototype.

Table 1 shows the mapping of datAcron modules to the different steps of Big Data Analysis
pipeline.

2.2.2 Inputs

Inputs to the datAcron architecture consist of data-at-rest (archival data) and data-in-motion
(streaming data). Archival data are loaded in the Data Manager , and during this process they
are transformed, integrated, and stored as will be described in detail in the following paragraphs.
On the other hand, a distinction is made for streaming data, namely whether they are positional
data describing the spatio-temporal movement of objects (trajectories) or not. Trajectories are
treated as “first-class” citizens in datAcron, thus trajectory data is summarized (at Synopses
Generator) and associated with low-level events (during In-situ Processing). Also, they are
integrated in the Data Manager module, before storing, with existing (static) data, such as
ports, airports, information about the moving object (vessel/aircraft type, model, etc.). Other
streaming data, such as weather forecasts, flight plans, regulations, etc., are directly fetched by
the Data Manager, in order to be integrated with the other available data.

2.2.3 Flows of Information

In the datAcron architecture, we have identified different flows of information, which will be
explained in detail in Section 3. However, to make this section self-contained, we briefly explain
how the input data is processed and made available to the different datAcron modules.

7
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The basic idea is that raw surveillance data is accessed as an incoming data stream in dat-
Acron. This stream is processed by different datAcron modules that enrich it with extra infor-
mation, including low-level events, detection of “critical points” with annotations of kinematic
nature, weather-related information, as well as information and links to other data sources (e.g.,
contextual). In more detail, this stream contains cleansed data, after removing noisy raw data.
The remaining raw data positions are either tagged or not by datAcron modules. A tagged po-
sition means that it is one (or both) of the following: it is a critical point or it is associated with
a low-level event (e.g., enter an area of interest). Non-tagged positions are positions that do not
contribute any important information, therefore, they can be omitted from further processing
(at least, they do not deserve to be stored in the datAcron store). This single stream is directed
to the Data Manager for storage and future batch processing.
The afore-described stream is available to all modules that perform data analytics in real-time,
namely Trajectory Detection and Prediction, Event Recognition and Forecasting and Visual An-
alytics, in order to provide the input necessary for the respective data analysis tasks. However,
the intermediate output stream of each module can be accessed by any other module too1. In
essence, this results in a loosely-coupled architecture, where higher level modules that perform
data analytics can consume the output of other modules that perform data extraction or in-
tegration, in order to optimize their operation in real-time. Also, data analytics modules may
also interact with each other; for instance, the Visual Analytics module visualizes the events
detected or predicted by the Event Recognition and Forecasting module in order to perform vi-
sual analytics, and the Event Recognition and Forecasting module takes as input the trajectories
detected or predicted by Trajectory Detection and Prediction to identify complex events related
to trajectories.

2.2.4 Outputs

When considering outputs of the datAcron architecture to the end-user, these consist of data
analytics results (detected and predicted trajectories and events, exploratory visual analytics,
etc.) initiated by a user that performs a specific task, and results to queries over the integrated
data provided by the Data Manager .

2.2.5 Key Issues and Benefits

The key issues for the datAcron architecture are as follows:

• The data synopses computed near to the sources aim to largely reduce at a high compression
rate the streaming data that the data management and analytics layers have to manage.
However, access to the raw streaming data is still an option for the analytics modules, in
case a module requires this explicitly.

• The data synopses computed from multiple streams can already be integrated at the lower
processing modules (near to the sources). Data synopses and archival data are transformed
into a common form according to the datAcron ontology, are integrated (where necessary)
and are pipelined to the rest of the analytics modules directly, in real-time. This alleviates
the need for analytics modules to access the datAcron store frequently.

1In D1.2, we have defined these separate output streams of each module, and made clear that they are available
to all other modules. In this refined version of the software architecture described in the present deliverable, we
provide a single stream that contains all information and can be accessed by any module. This is achieved by
having each module taking as input the Kafka topic which is output by the previous module, following a “chained”
approach. This approach solves several technical issues and allows fast prototyping.

8
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• “Raw” streaming data are not stored as they enter the system: Persistent storage concerns
data synopses, semantically annotated and integrated to archival data, trajectories and
events detected. The datAcron store provides advanced query answering services for other
system modules, and human or software clients to access these data, according to their
requirements on integrated data views.

The above architecture has certain benefits:

• All data from streaming and archival data sources, as well as trajectories and events com-
puted by analytics modules can be semantically integrated by discovering links between
respective instances, providing semantically-rich coherent views of data. Doing so, dat-
Acron seamlessly annotates trajectories and events with semantic information, and it links
these among themselves as well as with the rest of archival and cross-streaming data.

• All analytics modules can take full benefit of the computations of others, also taking advan-
tage of interlinking between their results. Thus, the trajectory detection and forecasting
methods can benefit from events detected or forecast and vise-versa. Similarly for the
visual analytics methods.

• Users can interact and explore data via integrated data views, being supported for model-
building towards analytics tasks and decision-making.

Input 
streams

Data
Integrator

RDF Store

Data Processing

Batch Processing

Event 
Forecasting

Trajectory 
Prediction

Visual 
Analytics

Analysis 
Results

Figure 3: Batch processing.

2.3 Design of Batch Layer

Batch processing (Figure 3) refers to the Data Manager module, which provides access to inte-
grated data, both historical and streamed data. However, there is an unavoidable gap between
real-time data and fresh data, due to sheer volume of data handled by the Data Manager and
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the induced latency for integrating the streaming data with the historical data. As such, it is
expected that Data Manager provides access to data up to a certain time point in the near past,
whereas the most recent data is handled in a streaming fashion. Eventually, this streaming data
will update the data stored in Data Manager .

On top of the Data Manager module, other datAcron modules operate and perform long-
running analysis tasks. For example: the Trajectory Detection and Prediction module performs
processing-intensive analytics tasks offline, such as clustering, classification, or others; the Event
Recognition and Forecasting module analyzes historical data to identify patterns of events; the
Visual Analytics module retrieves data in order to facilitate interactive analysis, data exploration
and visualization tasks. All afore-described analysis tasks translate to batch processing over
subsets of the historical data available in datAcron, and do not necessarily require the most
recent data that arrived in the system.

At the time of this writing, the state-of-the-art solution for batch processing is Apache
Spark [5, 6]. This framework is adopted in datAcron in order to develop the batch processing
functionality. In the following, it is described how Spark is extended, in order to accommodate
the needs and peculiarities associated with processing and analyzing trajectory data represented
in RDF. For more details, we refer to Deliverable D1.10 “Data storage and querying (final)” which
describes the batch layer in detail, and is also submitted at the same time with this deliverable
(on M30).

2.4 Design of Real-time Layer

In this section, we report the general guidelines with respect to the design of a datAcron module
operating in real-time (stream processing) in order to be easily plugged in the software architec-
ture.

In terms of software design, the main directive followed in the datAcron real-time layer is
that every real-time module must interact with other real-time modules in the architecture using
Kafka. This approach has some advantages:

• it allows modular design of the individual modules;

• it does not demand a common implementation framework or programming language;

• it makes integration easy, since the architecture is loosely-coupled, in contrast to tight
coupling that would impose the use of specific APIs;

• it enables the use of different serialization techniques by different modules when producing
output (for some tasks binary formats may be more suitable, e.g., Avro, Parquet, while in
other cases text in the form of JSON might be a better option).

As described in Deliverable D1.2 “Architecture Specification” and analyzed also below, the
real-time layer in datAcron (also illustrated in Figure 4 with respect to architectural modules)
requires two main functionalities: (a) stream processing, and (b) stream-based communication.

2.4.1 Stream Processing

Multiple operations in datAcron are performed on streaming data: the generation of trajectory
synopses, data integration, event detection (low-level events and complex events), trajectory
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Figure 4: Real-time processing.

prediction, event forecasting, and interactive visual analytics. The majority of these operations
must be performed in near real-time, respecting the requirements for operational latency (cf.
Table 3 in Section 3).

Taking into account the requirements for stream processing of the datAcron modules as well
as initial experimental tests, Apache Flink is going to be used primarily for implementing stream
processing functionality. We refer to Deliverable D1.8 “Cross-streaming data processing (final)”,
which reports experimental results from a comparison between stream processing frameworks
that support the choice of Flink. However, this does not exclude the usage of other stream
processing frameworks (e.g., Kafka streams) for specific modules of datAcron, if such a need
arises.

2.4.2 Stream-based Communication

To support different stream-based functionality, modules in datAcron need an interconnection
infrastructure, since typically the operation of one module may rely on the output of another
module. In order to support flexible interconnection and communication between modules with-
out imposing a rigid architecture, we opt for a loosely-coupled architecture for datAcron, which
has the additional advantage that different modules can be developed using different technologies.

In particular, all outputs of modules are streamed out, thus allowing any other module to con-
nect to any output stream(s) and have access to its content. In technical terms, datAcron adopts
the use of Apache Kafka as messaging system to implement the interconnection infrastructure
necessary to support our loosely-coupled architecture.

11



D1.11 Software design (final) H2020-ICT-2015 16/7/18

3 Design of datAcron Integrated Prototype

The purpose of this section is to refine the integrated software architecture of datAcron and
clarify the details of each module / flow as of M18. Therefore, in Section 3.1, we present details
of participating modules, and, in Section 3.2, we discuss the respective flows materialized by
these modules.

3.1 datAcron Modules

The envisaged datAcron architecture consists of the following modules listed in Table 2.

Module Nr. Module acronym Module Title Task in Work
Charge package

1) Maritime Maritime raw data feeder T5.2 WP5

2) Aviation Aviation raw data feeders T6.2 WP6

3) LED In-situ processing 1 – Low-level event detector T1.3.1 WP1

4) SG In-situ processing 2 – Synopses generator T2.1 WP2

5) SI Semantic integrator T1.3.2 WP1

6) DM Data manager T1.3.3 WP1

7) T/FLP Trajectory / Future location predictor T2.2 WP2

8) TDA Trajectory data analytics T2.3 WP2

9) CER/F Complex event recognition / forecasting (CER/F) T3.1-2-3 WP3

10) IVA Interactive visual analytics T4.3 WP4

11) Viz Real-time visualization T4.4 WP4

Table 2: The modules in the datAcron integrated prototype.

A short description as well as the implementation status (as of M18) of each module follows.

• Maritime raw data feeder (Maritime): The data feed is a decimated stream that
comes from a range of terrestrial AIS receivers and 18 satellites in a low earth orbit. The
maritime AIS data stream is collected, tested for veracity using a streaming analytics
module and then filtered to provide the data required for the datAcron project. The AIS
data stream is then converted, in real time, from an IEC 61162-1 data stream to a JSON
format data stream to allow it to be ingested into the datAcron system.

• Aviation raw data feeder (Aviation): This module comprises of a set of 6 European
Surveillance data feeds. Namely:

1. FlightAware real time surveillance feed: This module sends a stream of real time
surveillance from flightaware global live feed data in plain text to the stdout so it can
be piped to any consumer. Only one connection is allowed for datAcron project.

12
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2. FlightAware replay surveillance feed, online mode: This module sends a stream of
data for a given period in the past. It requires internet connection and uses flight
aware services. The data streamed starts at the beginning of the period and last till
all messages are delivered to the end of the period (a few days are maximum period
span allowed).

3. FlightAware replay surveillance feed, offline mode: This module sends a stream of
data reading a local json file previously stored from the real time surveillance feed. It
does NOT require internet.

4. ADSBExhcange real time surveillance feed: This module sends a stream of real time
surveillance from ADSBExchange global live feed data in plain text to the stdout so
it can be piped to any consumer.

5. ADSBExhcange replay surveillance feed, offline mode: This module sends a stream of
data reading a local file previously stored from the real time ADSBExchange surveil-
lance feed. It does NOT require internet.

6. ADSBHub replay surveillance feed, offline mode: This module sends a stream of data
reading a local file previously stored from the real time ADSBHub surveillance feed.
It does NOT require internet.

• In-situ processing 1 – Low-level event detector (LED): In-situ processing in general
refers to the ability to process data streams in-situ – as close to the source where the data
originates. This is in particular challenging, when the stream processing of the data requires
additional input from other sources, either other instances of the stream or from global
system settings or user interaction. As a proof of achieving the architectural integration of
in-situ processing, datAcron has implemented a distributed online learning framework on
distributed streams as described in detail in D1.8, allowing for faster adaption of models to
changes in real-time and providing an enriched event stream for visualization in real-time.
Based on this, event forecasting has been extended towards distributed online learning as
described in D3.5, making it possible to learn forecasting models cross-stream from other
moving objects.

• In-situ processing 2 - Synopses Generator (SG): The Synopses Generator consumes
streaming positions of raw surveillance data and eliminates any inherent noise such as
delayed or duplicate messages. Moreover, it identifies critical points along each trajectory,
such as stop, turn, or speed change, in order to provide an approximate, lightweight synopsis
per moving object.

• Semantic integrator (SI): Its functionality is to (a) transform data from all sources
to RDF and (b) discover links between different sources, output an enriched stream of
positional information and also send this stream for storage.

• Data manager (DM): Its functionality is to store information into a distributed spatio-
temporal RDF store and provide query answering facility.

• Trajectory / Future location predictor (T/FLP): FLP calculates motion functions
by harvesting the cleansed Kafka stream (from the Synopses Generator module) consisting
of the most recent locations from a moving object to predict its short-term future location
in real time by taking into consideration the tendency of the movement. Each predicted
point will be streamed out in real time to other modules. Regarding TP, it presents a
similar functionality targeting at predicting the future trajectory of a moving object as far
in time horizon as possible.
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• Trajectory data analytics (TDA): The goal of this module is twofold: on the one
hand it provides advanced analytics that serve specialized requirements in the datAcron
architecture (e.g. data-driven discovery of the networks/routes upon which the movement
of the vessels/aircrafts take place), while on the other hand it provides global patterns
that represent meta models devised from the local patterns (e.g. clusters and sequential
patterns of semantic trajectories).

• Complex event recognition/forecasting (CER/F): CER is about real-time detection
of complex events, whereas CEF is about real-time forecasting of complex events. Both
modules are working on the synopsis of the moving object generated by the two in-situ pro-
cessing modules (LED & SG) and, in addition, can take additional information achieved via
the enrichment and linking performed by SI. The output of CER is a real-time stream with
detected events. On the other hand, CEF enriches the input stream with a forecast about
the probability of each monitored event pattern. As event forecasting requires learning of
CER probabilities, it is more restrictive with respect to the potentially supported patterns
than the pure event detection.

• Interactive visual analytics (IVA): The IVA module builds on top of the real-time
visualization module to provide limited analytical capacity on streaming data. The pri-
mary use is to allow analysts, and possibly advanced operators, to fine-tune and observe
impact of parameter adjustments to the T/FLP and CER/F modules compared to actual
data in (near) real-time. It therefore complements the situation monitoring capabilities of
the real-time visualization used by ordinary operators on the one hand (by providing pa-
rameter settings to the detection modules), and the full-fledged VA suite used for in-depth
exploration and analysis in offline (strategic latency) settings.

• Real-time visualization (Viz): This module provides a map-based visualization of the
stream of enriched spatio-temporal events generated by the T/FLP and CER/F modules.
It is able to display different event types (e.g., critical points) simultaneously with indi-
vidual visual encoding for each type. In addition events associated with the same moving
object identifier are automatically integrated into trajectory representations so operators
can observe movement patterns. The overall design follows the “overview-first, zoom-and-
filter, details-on-demand” approach, meaning that operators can define filters on the input
stream to drill down on areas and event types of interest.

3.2 datAcron Flows

Having the modules presented above integrated, a number of information flows of three different
types are envisaged. In particular:

• Information management flows are about the reconstruction of trajectories and their en-
richment with useful annotation, which is to be performed online (operational latency),
and their storage for querying purposes, which is to be performed offline (tactical latency).

• Online analytics flows are about consuming the available streaming information, which is
to be performed online (operational latency); and

• Offline analytics flows are about consuming the available stored information, which is to
be performed offline (strategic latency).

14



D1.11 Software design (final) H2020-ICT-2015 16/7/18

Note that there exist three main consumers (namely, T/FLP, CER/F, and IVA), therefore,
3+3 flows are envisaged, for the online and offline analytics, respectively. Table 3 presents the
list of flows (along with the respective latency type and partners in charge of coordinating their
implementation).

Flow Nr. Flow Title Latency

Information management flows

1) Trajectory reconstruction and semantic enrichment Operational

2) RDF storage Tactical

Online analytics flows

3) Trajectory/FL prediction online Operational

4) Complex event recognition / forecasting online Operational

5) Visual Analytics online Tactical

Offline analytics flows

6) Trajectory data analytics offline (*) Strategic

7) Complex event recognition / forecasting offline (*) Strategic

8) Visual Analytics offline Strategic

Table 3: The datAcron flows of information (note: flows marked with * are not planned to be
implemented until M18).

The functionality of each flow is discussed in the following sections. In accordance with the
flows, Figure 5 illustrates the datAcron architecture, which is a refined version of the architecture
specified in Deliverable D1.2 “Architecture Specification”.

3.2.1 Flow #1: Trajectory reconstruction & semantic enrichment

• Short description: Maritime / Aviation raw data stream is (1a) cleansed, enriched with
derived information (e.g. speed) as well as low-level events (e.g. intersection with zones of
interest), synopsized by tagging “critical points” (change of heading or altitude, etc.), and
(1b) further enriched with info from other external data sources / streams (weather info,
etc.); the final output (1c) is streamed out to be consumed by other modules, including its
visualization (1d).

• Modules involved: Maritime / Aviation; LED; SG; SI; Viz.

3.2.2 Flow #2: RDF storage

• Short description: A subset of the enhanced surveillance data stream, i.e. the annotated,
synopsized surveillance data, as well as selected output streamed out by other modules is
(2a) processed and (2b) stored in the RDF store.

• Modules involved: DM.

3.2.3 Flow #3: Trajectory/FL prediction online

• Short description: T/FLP (3a) consumes the enhanced surveillance data stream (as well as
other streams, if needed) for the purposes of online trajectory / future location prediction
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Figure 5: The refined datAcron architecture.

and (3b) streams out its output to be consumed by other modules, including its visualization
(3c). Stores prediction results in the form of Parquet files in HDFS for evaluation purpose.

• Modules involved: T/FLP; Viz.

3.2.4 Flow #4: Complex event recognition / forecasting online

• Short description: CER/F (4a) consumes the enhanced surveillance data stream (as well
as other streams, if needed) for the purposes of online event recognition / forecasting and
(4b) streams out its output to be consumed by other modules, including its visualization
(4c).

• Modules involved: CER/F; Viz.
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3.2.5 Flow #5: Interactive visual analytics online

• Short description: IVA consumes the enhanced surveillance data streams (3c, 4c), streamed
meta data on the T/FLP and CER/F modules (current parameter settings, 5a), and, if
needed, base data for comparison (1d) for the purposes of online VA; and (5b) streams out
its output (updated parameter settings, areas-of-interest) in KVP format to be consumed
by other modules.

• Modules involved: IVA; T/FLP; CER/F.

3.2.6 Flow #6: Trajectory data analytics offline

• Short description: TDA (6a) queries the RDF store in order for complex patterns to be
discovered and (6b) stores selected results back to the RDF store for future use.

• Modules involved: TDA; DM.

3.2.7 Flow #7: Complex event recognition / forecasting offline

• Short description: CER/F (7a) queries the RDF store in order to fetch data for complex
events to be detected/forecasted and (7b) stores selected results back to the RDF store for
future use.

• Modules involved: CER/F; DM.

3.2.8 Flow #8: Interactive visual analytics offline

• Short description: IVA (8a) queries the RDF store to get large batches of raw data for
complex offline analysis and (8b) stores selected results (derived attributes, spatio-temporal
patterns, clustering results, parameter settings) back to the RDF store for future use.

• Modules involved: IVA; DM.
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4 Implementation of datAcron Integrated Prototype

In this section, we provide more technical details on the datAcron flows, thus presenting their
implementation and the specific interactions between the individual modules.

Figure 6: Flows #1 and #2 in the implemented prototype.

Figure 6 shows in more technical detail the information flows 1 and 2, which is are two of the
most critical information flows in datAcron, as they provide enriched surveillance data for further
online analytics tasks (flow 1), and generate integrated data for storage and offline analysis (flow
2).

4.1 Trajectory Reconstruction & Semantic Enrichment (Flow #1)

In this flow, the prototype consumes as input raw surveillance data, both for maritime and
aviation surveillance sources. This input is provided as a Kafka stream. In-situ processing
modules operate on this stream.

• LED is a Flink component that processes a stream of raw messages (i.e., AIS dynamic
messages) and enriches it with derived attributes such as min/max, average and variance
of original fields. As such, LED accesses the raw stream containing positions of moving
objects (vessels or aircrafts) and identifies low-level events, such as entry/exit to areas of
interest. In addition, a stream simulator for the raw messages is developed in the context of
this module, which provides a functionality to replay the original stream of raw messages by
generating a simulated new Kafka Stream and taking into account the time delay between
two consecutive messages of a trajectory. Furthermore, this delay can be scaled in/out by
a configuration parameter. In more detail, LED computes the following attributes on per
trajectory basis:

– Min/Max, average and median of speed
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– Min/Max, average and median of acceleration

– Min/Max, median of time difference between successive points

– Min/Max duration, dates and coordinates

The output is provided as a Kafka stream that contains the original information as well as
the afore-described fields. For the maritime use-case, the output line header is:

id,status,turn,speed,course,heading,longitude,latitude,timestamp,
AverageDiffTime,NumberOfPoints,LastDiffTime,MinSpeed,MinDiffTime,
MaxSpeed,MaxDiffTime,MinLong,MaxLong,MinLat,MaxLat,LastDifftime,
AverageSpeed,VarianceSpeed

Table 4 explains the output description; the same order of attributes is used as in AIS
messages with additional attributes computed by this module. Regarding surveillance
data in the aviation domain, LED is integrating streaming data from different data sources,
namely ADSB data provided by ADSBHub and by FligthAware and IFS RadarData. For
AIS data in the maritime domain, several error flags are being generated. The detailed
description of the operation of LED is provided as a separate deliverable D1.8 “Cross-
streaming data processing (final)” on M30.

Attribute Data type Description

id integer A globally unique identifier for the moving object (usually, the MMSI of vessels).

status integer Navigational status

turn double Rate of turn, right or left, 0 to 720 degrees per minute

speed double Speed over ground in knotsint (allowed values: 0-102.2 knots)

course double Course over ground (allowed values: 0-359.9 degrees)

heading integer True heading in degrees (0-359), relative to true north

longitude double Longitude (georeference: WGS 1984)

latitude double Latitude (georeference: WGS 1984)

timestamp long timestamp in UNIX epochs (i.e., milliseconds elapsed since 1970-01-01 00:00:00.000)

AverageDiffTime long The average of difference time between the positions message of a trajectory

NumberOfPoints int The accumulated number of the received points

LastDiffTime double The time difference of the current message and the last previous received message

MinSpeed double The minimum value of speed until current message

MinDiffTime long The minimum value of time difference until current message

MaxSpeed double The maximum value of speed until current message

MaxDiffTime double The maximum value of time difference until current message

MinLong double The minimum value of longitude until current message

MaxLong double The maximum value of longitude until current message

MinLat double The minimum value of latitude until current message

MaxLat double The maximum value of latitude until current message

AverageSpeed double The average of the speed

VarianceSpeed double The variance of speed

Table 4: LED output description.

• SG accesses the output of LED and performs two major operations. First, it performs
data cleansing, thus eliminating noisy data. Second, it identifies “critical points” on per
trajectory basis. Essentially, SG tags the most significant positions that contain information
that can accurately described the trajectory with information describing each critical points
(e.g., “turn”, “gap_start”, “gap_end”, etc.). The output is provided in Avro2 format as a
Kafka stream. The detailed description of the operation of SG is provided in deliverable
D2.1 “Cross-streaming, real-time detection of moving object trajectories (interim)” on M18.

2https://avro.apache.org/
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• SI receives the Kafka stream produced by SG and performs transformation to RDF as well
as data integration, by enriching positions with information about weather as well as other
contextual information. The output is provided in RDF, encoded in Terse RDF Triple
Language (TTL)3 and serialized in binary format as Java objects, also provided as a Kafka
stream. The detailed description of the operation of SI is provided as a separate deliverable
D1.9 “Data Integration, Management (final)”. The implementation of RDF data generators
is in Java, whereas the link discovery framework – which is the most processing-intensive
operation in SI – is implemented in Apache Flink.

• Viz receives this enriched stream of information and provides real-time visualizations that
can be used by operational users for improved situational monitoring and awareness.
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Figure 7: Overview of the datAcron distributed RDF engine (flow #2).

4.2 Distributed RDF Storage and Processing (Flow #2)

This flow is a continuation of Flow #1, namely it receives the RDF data provided in a Kafka
stream and stores it in the distributed RDF store for querying purposes. The detailed description
of the operation of the DM module which contains the distributed RDF store is provided as a
separate deliverable D1.10 “Data storage and querying (final)”.

Figure 7 illustrates the architecture of the datAcron distributed RDF engine. It is respon-
sible for the batch processing part of the datAcron architecture (cf. deliverable D1.2), and
has been designed and built from scratch during the course of the project. By design, the
datAcron distributed RDF engine targets the following objectives:

3https://www.w3.org/TR/turtle/
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• Scalable storage and processing for vast volumes of RDF data, in the order of Billions of
RDF triples (targeting the Volume dimension of Big Data)

• Support for spatio-temporal RDF data, i.e., RDF data which are mostly associated with
spatio-temporal information

• Efficient processing strategies that employ optimization techniques, in order to prune sig-
nificant subsets of data and reduce execution time

• A prototype implementation that includes the functionality provided by a typical data
warehouse system, from loading data to querying and optimization.

Description of Layers The datAcron distributed RDF engine encompasses two main layers:
(a) a distributed storage layer, and (b) a parallel data processing layer. In addition, an application
layer has been introduced to demonstrate the offered functionality and allow its use by external
applications.

The distributed storage layer provides a scalable storage solution for the spatio-temporal
RDF data that is generated by the online components described in Flow #1. HDFS is used
for storage of the RDF data, whereas the actual files storing the RDF triples are Parquet files.
Following best practices in storage of RDF data, we employ a dictionary approach which maps
strings representing URIs or literals to integer values, thus enabling more effective storage due to
compression and more efficient access. Consequently, besides the encoded RDF triples, we need
to store the dictionary that maps strings to integers and vice-versa. Due to the access patterns on
dictionary data which consist of random lookups, we select an in-memory, distributed key-value
store (REDIS) for storing the dictionary. Last, but not least, the storage layer also maintains
various data statistics, mainly in the form of histograms, in order to support query planning and
optimization.

The parallel processing layer implements a parallel data processing engine for spatio-
temporal RDF data. The main modules of the engine are implemented from scratch in Apache
Spark, thus providing a efficient and scalable processing solution. It receives as input SPARQL
queries along with spatio-temporal constraints and returns matching RDF data, after paral-
lel/distributed query execution. The main modules of the query engine include:

1. Query parser: checks the correctness of syntax, ensures that the SPARQL query is specified
correctly, and transforms the query into an internal representation that will be used by the
remaining modules of the processing engine

2. Logical query planner: constructs the logical query plan, a tree representation of the dif-
ferent logical operators in the query

3. Logical optimizer: performs rule-based optimization to derive an optimized logical plan
that will be passed further to the physical execution modules

4. Physical query planner: constructs candidate physical execution plans, taking into account
various factors, such as storage organization, data location, etc.

5. Physical optimizer: performs cost-based optimization to derive the best physical execution
plan

6. Execution engine: practically executes the Spark code that implements the selected physical
execution plan
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7. Decoder: performs lookups in the dictionary, in order to transform the resulting RDF data
from encoded integer values back to their original string representation, so that they are
meaningful to the user.

The application layer is not a core module of the implemented datAcron distributed RDF engine;
rather, its role is for support the invocation of query processing from other modules of the dat-
Acron integrated prototype. For this purpose, we use Apache Livy4, an incubator Apache project
that allows submission of Spark jobs from web and mobile applications. In practice, we have
developed a web application that implements a REST API and allows submission of SPARQL
queries to the datAcron distributed RDF engine. In addition, we have developed a primitive web
page that also allows humans to submit SPARQL queries using the REST API.

Operations An application that uses the datAcron distributed RDF engine can use two main
operations: data loading and querying.

The data loading operation considers as input an RDF data set that can be arbitrarily
large. In the context of datAcron, this data set consists of spatio-temporal RDF data and it
is the output of the online data transformation and link discovery components described in
Deliverable D1.9. During data loading, the RDF data is encoded to integer values based on the
Encoder (described in Deliverable D1.10). The Encoder produces as output encoded RDF data
and a dictionary that allows decoding of integer values back to strings (URIs or literals). The
encoded RDF data is stored in HDFS, whereas the dictionary is stored in-memory using REDIS,
a scalable in-memory distributed key-value store. In addition, during the data loading operation,
the Statistics Manager computes various statistics about the loaded data, which are also stored
to be used during query execution, in order to derive an optimized query execution plan.

The querying operation takes as input a SPARQL query, which is directed to the processing
layer of the engine for query evaluation, and provides the matched RDF triples as result. The
processing layer is implemented in Apache Spark, a state-of-the-art solution for batch, in-memory
processing of Big Data. First, the SPARQL query undergoes query parsing, which aims to ensure
correct formulation and to represent it as a logical query plan that can be manipulated by the
other components of the processing engine. The logical query plan is given as input to the
logical optimizer whose role is to perform a set of standard optimizations (such as reordering join
operations), and generate a set of potential physical execution plans. Then, the physical optimizer
examines these physical plans and performs cost-based optimization, also exploiting the available
statistics, to select the best physical execution plan. This is provided to the execution engine
that performs query processing and provides the resulting RDF triples. Prior to result delivery
to the application, a decoder performs translation of the encoded triples back to their string
representation.

4.3 Online Future Location Prediction and Trajectory Prediction (Flow
#3)

This flow addresses the trajectory and future location prediction in an online fashion.

Sub-flow #3a The sub-flow #3a in the datAcron architectural diagram is actually the in-
put for module T/FLP. Normally, this involves data from full-resolution data, synopses and

4https://livy.incubator.apache.org/
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enriched data integrated into the corresponding sub-flows #1x and then published in the “en-
hanced surveillance data stream”.

T/FLP contains algorithms for trajectory and future location prediction. These algorithms
operate in two different modes: (a) normal mode, in which they consume the output of Flow
#1, or (b) streaming simulation mode, in which they consume CSV files in a streaming fashion,
mainly for testing their functionality. T/FLP operates on the following set of attributes, in order
to perform its task:

• id

• ts (timestamp)

• longitude

• latitude

• (altitude – for the aviation domain)

Sub-flows #3b/#3c The sub-flows #3b/#3c in the datAcron architectural diagram are ac-
tually the outputs from module T/FLP. Normally, this includes forecasts of variables from T/FL
predictors and they are published in the “enhanced surveillance data stream”.

The prediction results from T/FLP are stored as JSON Arrays in HDFS, in order to evaluate
the proposed algorithm, enrich synopses results (fill communication gaps) and give extended
input in clustering or statistical procedures. The prediction results can be stored in byte array
format (Serialize Arvo Schema with Avro Tools and produce byte array) for more efficient storage
and retrieval, in order to be used by algorithms in the Trajectory Data Analytics module (see:
Sub-flow #6b).

According to the current implementations in module T/FLP, there is a proposed schema that
can be used as template for the final integration with modules VA, SI and the enhanced data
stream. The stream specification is Kafka in JSON format and its design is as follows:

Sub-flows #3b,#3c: Kafka/ Avro record (provisional)

"name": "PredictionArray",
"type":"record",
"fields":[

{
"name" : "point" , "type" : {
"type": "array",
"items":{

"name":"RMFPoint",
"type":"record",
"fields":[

{"name":"id", "type":"long"},
{"name":"timestamp", "type":"long"},
{"name":"longitude", "type":"double"},
{"name":"latitude", "type":"double"},
{"name":"altitude", "type":"double"},
{"name":"speed", "type":"double"},
{"name":"heading", "type":"double"}
]
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}
}

},
{"name": "prediction", "type": "boolean"}

]

4.4 Complex Event Recognition / Forecasting Online (Flow #4)

The modules Complex Event Recognition (CER) and Complex Event Forecasting (CEF) are
deployed and operate on both the maritime AIS data and the aviation surveillance data. Both
modules consume the data provided by the SG module and either read in the data from file or
from a Kafka topic. Outputs are produced as streams on Kafka.

For simulating real-time data as being received from the external world, a “Synopses Stream
Simulator” has been developed that does the following:

• ingest the synopses CSV data from Kafka stream or by CSV file source reader,

• process the synopses to reconstruct the trajectories and simulate the original stream by
delaying the propagation the synopses based on the time difference between the synopses
of a trajectory (time delay can be scaled in/out by a given parameter),

• then, the synopses are published to Kafka Stream in JSON format as shown in the following
example:

{
"timestamp": 1451606409000,
"id": "227006770",
"longitude": 0.133466666666667,
"latitude": 49.4754,
"annotation": {

"stop_start": false,
"stop_end": false,
"change_in_speed_start": false,
"change_in_speed_end": false,
"slow_motion_start": false,
"slow_motion_end": false,
"gap_start": false,
"gap_end": true,
"change_in_heading": false,
"noise": false

},
"distance": 0,
"speed": 0,
"heading": 0,
"time_elapsed": 0,
"msg_error_flag": ""

}
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Regarding the integration with the real-time visualization (Viz), Viz is reading in this Kafka
stream and plotting the trajectory in simulated real-time. In addition, Viz is receiving events
streams with forecasts.

Complex Event Forecasting This module processes the synopses stream of vessels and at-
taches predications of predefined patterns (i.e., defined by regex) as illustrated in the following
JSON output line of a synopsis after adding the predictionsMap by this module, where is the pre-
dictions list for each pattern is expressed as [current relative timestamp, start time of completion
interval, end time of completion interval, probability of the pattern] :

{
"timestamp":1451606409000,
"id":"244710897",
"longitude":4.42071333333333,
"latitude":51.8845133333333,
"annotation":{

"stop_start":false,
"stop_end":false,
"change_in_speed_start":false,
"change_in_speed_end":false,
"slow_motion_start":false,
"slow_motion_end":false,
"gap_start":false,
"gap_end":true,
"change_in_heading":false,
"noise":false

},
"distance":0.0,
"speed":0.0,
"heading":0.0,
"time_elapsed":0,
"msg_error_flag":"",
"predictionsMap":{

"change_in_heading.gap_start.gap_end.change_in_heading":[
2.0,
13.0,
17.0,
0.65

],
"change_in_heading.gap_start.(gap_end|change_in_heading)":[

2.0,
9.0,
14.0,
0.70

]
}

}

The forecasting module is implemented in Flink with Java 8, reading from Kafka, sending to
Kafka and is able to forecast complex patterns.
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Complex Event Recognition Regarding event recognition, the CER module consumes seri-
alized ST_RDF java objects and produces serialized ComplexEvent java objects that contain a
JSON string with the recognised complex events. Several patterns have been implemented and
tested. For the maritime use case, Table 5 provides an overview of the recognised complex events
and their association to maritime situational indicators (MSIs).

MSI Complex event

8 Not compatible with area

9 Not compatible with vessel type

19 Under way

20 At anchor or moored

21 Movement ability affected

22 Aground

23 Engaged in fishing

24 Tugging

25 In SAR operation

26 Loitering

27 Dead in water, drifting

28 Rendezvous

Table 5: List of implemented MSIs and complex events.

In turn, for the flight planning use case, the following complex events have been implemented
and can be recognised:

• top-Of-Climb

• top-Of-Descent

• deviation from flight plan

• hold entry

• hold exit

4.5 Interactive Visual Analytics Online (Flow #5)

This flow is about interactive visual analytics online. Although SG and TFL/P are not explicitly
associated with Flow #5, they are included here for completeness, as they are actually what feeds
into a “stream combinator”, which fuses streams #1d, #3c and #4c into the single enhanced
surveillance data stream that (for the current implementation) serves as the only input to the
visualization module Viz.

Viz digests this enriched stream of spatial events that are further and automatically integrated
into trajectory objects, displayed jointly as points and lines, respectively, on a (2D) map display.
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It should be noted that from the perspective of the visualization, actual position reports
(ground truth/historic data, stream #1d), predicted events (#4c), and trajectory synopsis (#3c)
are all comprised of (a set of) spatial events. The only difference is what additional event
attributes are available for visual mapping – e.g., for the semantic type label for synopsis/critical
points, or a flag indicating whether this is an actual, observed datum or a predicted position. The
principal format of the input stream, including the thematic event attributes and flags currently
supported, has been described in detail in Flow #4 above (Section 4.4).

The IVA module builds on top of Viz to provide limited analytical capacity on streaming
data. Therefore, the principal input to the IVA is identical to that of the Viz – streams #1d,
#3c, #4c. The primary use is to allow analysts, and possibly advanced operators, to fine-tune
and observe impact of parameter adjustments. This adds flows #5a and #5b to the picture,
which represent the input to and output from, respectively, the IVA module to the T/FLP and
SG modules.

Sub-flow #5a The role of sub-flow #5a in the datAcron architectural diagram is to commu-
nicate current parameter settings from the computational modules T/FLP and SG to the IVA
module.

We have identified the following information that could be meaningfully communicated be-
tween them, in addition to any semantic information already encoded and communicated through
event streams #3c and #4c:

1. Current values of named free parameters of specific detection/prediction algorithms, e.g.,
the minimum CPA distance threshold for MSI#28 (rendez-vous), for UI display purposes

2. Locations (points) or areas (polygons) of interest, such as protected areas (MSI#02), ref-
erence locations (MSI#01, MSI#03), aeronautical waypoints, or ATC sectors, to display
this context information on the map display

3. Sets (arrays) of historic attribute values (e.g., vessel speeds) with a defined “window length”
(start and end time stamps relative to current real time), to populate “detail on demand”
information overlays for selected entities during real-time analysis.

4. Other control commands affecting the computational modules, such as a “reset” command
for the in-situ processing module to trigger a corresponding reset of statistical aggregates
collected over the stream up to the given moment.

In terms of actual online integration, the networked connection between modules Viz, SG,
and T/FLP would utilize the same Kafka with JSON-encoded payload as has been deployed
successfully.

Sub-flow #5a: Kafka/Avro record (provisional)

"name": "HistoricDataArray",
"type":"record",
"fields":[

{"name" : "point" , "type" :
{

"type": "array",
"items":{

"name":"RMFPoint",
"type":"record",
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"fields":[
{"name":"id", "type":"long"},
{"name":"timestamp", "type":"long"},
{"name":"longitude", "type":"double"},
{"name":"latitude", "type":"double"},
{"name":"altitude", "type":"double"},
{"name":"speed", "type":"double"},
{"name":"heading", "type":"double"}

]
}

}
},
{"name": "windowstart", "type": "long"},
{"name": "windowend", "type": "long"},
{"name": "historic", "type": "boolean"}

]

Note the proposed format replays all information that uniquely identifies any spatial event
(id, timestamp, geographic coordinates), in addition to any requested attributes. This allows to
register detail overlay with recent data that is retained on the map display.

Sub-flow #5b The role of sub-flow #5b in the datAcron architectural diagram is to commu-
nicate updated parameter settings from the IVA module to the computational modules T/FLP
and SG. Data format and technical realization would be equivalent to those described above for
sub-flow #5a, with the exception that only stream content (a) and (b) – i.e., user-adjusted free
parameter settings, user-defined points or areas of interest – are meaningful.

Figure 8: Architecture of the IVA component.

Implementation Details of Flow #5 The implementation of the real-time visualization VA
module follows the client-server architecture . Figure 8 depicts the architecture of this component.
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While we refer to deliverable D4.8 (Section 3), for more details, a brief overview is provided here
to make this deliverable self-contained.

On the server side, Kafka streams are consumed. All the applications on the server side are
developed in Java. The client side is browser-based and written in JavaScript. The incoming mes-
sages from the Kafka streams are processed one by one and from every incoming Kafka message
a JSON object is generated. Each JSON object is forwarded to the client using WebSockets.

The architecture depicted in Figure 8 is generic with respect to its inputs. In fact, any input
source providing enriched positional information of moving objects can be consumed and fed to
the visualization front end, as long as it is provided as a Kafka stream. Essentially, this facilitated
the integration with the Kafka streams provided by the components T/FLP and CER/F, as well
as with the enhanced surveillance stream provided by SI.

4.6 Trajectory Data Analytics Offline (Flow #6)

This flow refers to the offline Trajectory Data Analytics module and is broken down to sub-flow
#6a and sub-flow #6b. More specifically, sub-flow #6a provides the input from the DM to
the offline Trajectory Data Analytics module and sub-flow #6b writes back the output of this
module to the DM.

Figure 9: The offline Trajectory Data Analytics (TDA) module.

Actually, in this module the analyst selects the desired component of the offline Trajectory
Data Analytics module and poses a SPARQL query to the DM so as to retrieve its input.
Subsequently, the RDF triples are fetched (Flow #6a) and parsed, in order to feed the needs of
the desired component of the offline Trajectory Data Analytics module, and the output can be
written back to the DM which can be accessible to the analyst again via the SPARQL Interface.
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An example of the input of a component is provided for the Distributed sub-trajectory clus-
tering analysis. More specifically, the analyst poses a SPARQL query to the DM and retrieves
the desired data in the form of RDF triples. Then, the RDF triple parser transforms these triples
to the appropriate format for the specific component. In fact, this component receives one record
per point and must be of the form:

• Id: the object id

• t: the timestamp of the point

• lon: the longitude of the point

• lat: the latitude of the point

• alt: the altitude of the point (optional)

The output of this component is one cluster per record and is of the form:

• repr_id: the id of the representative sub-trajectory of the cluster (actually, this is the
cluster identifier)

• <subtraj_id1, . . . , subtraj_idn>: a list of the sub-trajectories that belong to the cluster
which is led by repr_id

Finally, this output is again converted to RDF, stored to the DM and is available to the
analyst via the SPARQL interface provided by DM.

4.7 Complex Event Recognition / Forecasting Offline (Flow #7)

This flow realizes the offline complex event recognition and forecasting functionality. This is as
example of a datAcron flow that is only technically possible in the architecture, but actually not
required from the semantics of the applications considered in the project.

In the second half of the project, we have extended the capabilities of the online CER/CEF,
such that there is no need to work in some preparatory manner off-line. This practically elimi-
nated the need for explicitly developing Flow #7.

4.8 Interactive Visual Analytics Offline (Flow #8)

The IVA component provides facilities for the visual exploration of data and visual-interactive
support for building and refining models and their parameter settings. It therefore targets
analysis experts working on the strategic level using data at rest, but may in suitable cases
also provide visualizations with limited interactivity on the tactical or even operational level.
Therefore, the IVA component mostly operates in batch mode (offline), and can be fed with data
from a wide variety of data sources, including the DM.

The purpose of the Visual Analysis approach is to combine algorithmic analysis with the
human analyst’s insight and tacit knowledge in the face of incomplete or informal problem
specifications and noisy, incomplete, or conflicting data. Visual Analysis therefore is an iterative

30



D1.11 Software design (final) H2020-ICT-2015 16/7/18

Figure 10: The Visual Analytics Loop supported by datAcron’s IVA component, adapted from [4].

process where intermediate results are visually evaluated to ascertain and inform subsequent
analysis steps based on prior knowledge and gathered insights. The underlying conceptual model
is the Visual Analytics Loop (Fig. 10). Specifically, it is worth noting that due to the exploratory
focus, VA does not prescribe a rigid pipeline of algorithmic processing steps, nor does it prescribe
a fixed composition of specific visualizations, as opposed to typical KPI dashboards.

To cope with these requirements in an efficient and scalable way, the Visual Analytics com-
ponent within the integrated datAcron architecture is itself of a modular, extensible design,
as shown in Figure 11. It comprises four principal component groups - data storage, analysis
methods, data filtering and selection tools, and of course, visualization techniques. Different
components are typically composed in an ad-hoc fashion, through visual-interactive controls, to
facilitate the workflow required by the human analyst’s task at hand. In particular, this allows
creating linked multiple views to simultaneously visualize complementary aspects of complex
data or analytical models. Figure 11 indicates by color marks matching colors from Figure 10
what components are typically involved in which phases of the VA loop.

Data Storage The data storage component serves three functions. First, it provides an inter-
face to the Data Manager (DM). This allows read access to historical data, specifically, from the
distributed spatio-temporal RDF store. In cases where analysis results in data artifacts that are
worth persisting, for example interactively defined area boundaries, “typical” vessel trajectories,
or analytical models for later use such as spatio-temporal flow graphs of aircraft, these are pushed
down to the Data Manager for long-term storage and retrieval.

Second, this component provides management of intermediate analysis results. This is nec-
essary as interactive analysis frequently requires data representations that are different from
archival storage for efficiency reasons, e.g. by denormalizing data kept in a relational schema.
In addition, the explorative and iterative nature of analysis often results in intermediate data
attributes that are almost immediately discarded for a refined result (e.g., cluster associations of
entities after interactive parameter changes to the algorithm). Such data is never persisted and
so is not handled by the distributed RDF store.

Third, ad-hoc analyses might often have the need to integrate external data not yet ingested
by the Data Manager . Typical examples include data and models generated by scripts or other
tools in standard formats (CSV files, Shape files, XML files, or local databases) by an ana-
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lyst. Enabling this loose, file-based integration into the VA platform has proven essential in
maintaining flexibility and extensibility in terms of the analyst’s tool capabilities.

Data Selection and Grouping Similar to the data storage component, functionality of this
module is divided between the central Data Manager and the VA components internal selector
module. Complex queries to large historical or synopsis data are handed off to the query engine
of the distributed RDF store (see Deliverable D1.10).

One key feature of Visual Analytics, however, is the ability to directly manipulate data
and algorithm parameters through visual interaction. Therefore, interactive selection of data
elements across multiple views allows the analyst to define complex, multi-faceted filters on data
before analytical processing. An example is the simultaneous specification of a geospatial region
in a map display, a specific time range from a time graph, and a subset of entities according
to some cluster visualization (e.g., see [2]). Such compound queries are mostly executed on the
in-memory representation held by the VA module’s data storage component.

Figure 11: The Visual Analytics module architecture with its principal components to support
the VA loop.

Analysis Methods From the perspective of the IVA offline module, analysis methods fall into
the category those applied in exploratory analysis on the strategic level: selection and parameter
tuning of algorithms prior to their application at operational (real-time) or tactical latency levels.
The VA component facilitates the integration of a wide range of algorithms by loose coupling on
the level of tabular and graph-structured data handled by the data storage component.

Visualizations Outwardly the core component of a visual analysis system, this component
will provide the set of interactive visualization techniques needed for – primarily exploratory –
analysis. The final set of visualizations is not prescribed at this point of time, however. Rather,
it is derived from use case requirements (see documents D5.3, D6.3), and is likely to involve
research in designing novel visualization techniques. Available visualizations are expected to
include established base techniques such layered map displays, time graph displays, but also
specialized and complex representations such as dynamic flow graph visualizations that are one
current focus of VA research in datAcron. Similar to integrated analysis techniques, visualization
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technique will be integrated on the level of internal data representation, i.e., based on how types
of entities and their attribute structure are mapped to specific visual encodings by a given
visualization technique.
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5 Conclusions

In this deliverable, we report the final software design of the project. Although, the interim design
reported on M18 was subject to revisions and optimizations in the second part of the project,
no major re-design was necessary. In fact, with the exception of internal module optimizations,
some extensions of provided functionality and the respective changes in input/output fields of
various modules, the design online part of the datAcron architecture has been confirmed in the
second half of the project.

As regards the batch processing part, which mainly consists of the distributed RDF process-
ing engine, this deliverable presents its internal software design, which is further reported in
more detail and evaluated in the respective deliverable D1.10. The design of this module of the
datAcron architecture includes most of the major components necessary to realize a processing
engine, from query planning to optimization and execution. In turn, the distributed RDF en-
gine provides querying over integrated data, whose results can be used as input for offline data
analytics, which capitalize on the integrated data to provide improved functionality.

Figure 12: The datAcron software stack and related Big Data technologies.

In summary, the datAcron integrated prototype demonstrates its functionality and operation
in real-time processing and online scenarios, most notably with low-level event detection, genera-
tion of trajectory synopses, semantic enrichment of positional data with contextual and weather
data, as well as with higher data analysis tasks, including future location prediction, complex
event recognition and forecasting and real-time visualizations. Also, the prototype is able to
demonstrate batch processing and offline analytics over integrated RDF data, using Spark as the
Big Data platform for development. Figure 12 provides an illustration of the datAcron software
stack, showing the individual modules and the Big Data technologies on which they rely.
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A The datAcron Cluster

The datAcron infrastructure consists of a cluster of 10 physical nodes with the following specifi-
cations:

• CPU Intel Xeon E5, 6 cores, 1.6GHz

• 128GB DDR4 RAM

• 6TB HDD + 200GB SSD

• 1Gbit connection to the outside world

Node 1 is configured as NameNode and Resource Manager, while Nodes 2 – 10 correspond to
DataNodes.

In terms of software versions, we have installed in all machines:

• Ubuntu: 16.04.2 (kernel 4.4.0) x64

• Java: 1.8.0_121

• Hadoop, HDFS, YARN: 2.7.2

• Spark: 2.1.1 (with Scala 2.11.8)

• Redis: 3.2

• Scala: 2.11.7

• Flink: 1.2

• Confluent: 3.1.1

• Vagrant: 1.9.1

• Python: 2.7.12

• Ansible: 2.3.0

We also provide more details with respect to HDFS and YARN (a container is either a map
or a reduce task):

• HDFS

– Total available space: 48.35 TB (5.37TB on each node)
– Replication factor: 3
– Total effective space: 16.12 TB

• YARN

– Total available vCores: 90 (10 on each node)
– Total available ram: 360GB (60GB on each node)
– Minimum container ram size: 1GB
– Maximum container ram size: 10GB

The above specifications describe the capabilities of our infrastructure in terms of resources,
more specifically storage, memory, networking, and processing.
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