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EXECUTIVE SUMMARY

This report is deliverable D1.13 of datAcron work package 1 “System architecture and data
management” with main objective to evaluate the datAcron integrated prototype system, in
accordance with the requirements specified in deliverable D1.1, the architecture specified in
deliverable D1.2, and the description of the integrated prototype reported in D1.12.
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1 Introduction

This document is the deliverable D1.13 “Integrated prototype evaluation report” of work package
1 “System Architecture and Data Management” of the datAcron project, submitted on month
M36 of the project.

D1.13 is focused on the evaluation of the integrated prototype of datAcron, as an integrated
system consisting of different modules developed in the context of the technical work packages
WP1–WP4. As such, its objective is to report evaluation results of the integrated system as a
whole, while for the evaluation of individual modules we refer to the corresponding deliverables.

1.1 Purpose and Scope

The datAcron integrated system prototype comprises a big data architecture that encompasses
both a stream processing part, as well as a batch processing part.

In the stream processing part, online operations are performed on streams of surveillance
data (data in motion); these operations include trajectory reconstruction, trajectory compres-
sion, trajectory enrichment, future location prediction, complex event recognition and forecast-
ing. In terms of evaluation, the primary objective related to the stream processing part of the
architecture is low-latency processing, with operational latency (i.e., in the order of one second)
and tactical latency (i.e., in the order of a few seconds) – depending on the specific online oper-
ation – in the respective analysis of requirements (cf. deliverable D1.1). At the same time, the
integrated system should achieve high throughput and scalability, so that it can exploit hardware
provisioning to support higher input rates.

In the batch processing part, the functionality offered can be broadly classified in two cat-
egories: querying of integrated RDF data and data analytics. Spatio-temporal RDF query
processing is achieved by the distributed datAcron processing engine, which a a distributed RDF
storage and processing solution developed from scratch in the datAcron project. Its primary
evaluation objective is the performance and scalability of query processing, for various data set
sizes and queries of increased complexity. The data analytics solutions are distributed algorithms
that scale gracefully as the volume and/or velocity of input data sets increases. In turn, their
primary evaluation objective is twofold: first, processing performance, and, second, quality of
results (e.g., accuracy of prediction).

To achieve the afore-described objectives, the individual modules are designed and imple-
mented using state-of-the-art frameworks for Big Data processing, most notably Apache Flink
and Apache Spark. In this way, scalability and fault-tolerance is achieved at the level of each
individual module. The intercommunication of the different online modules is achieved using
Apache Kafka, the de-facto standard for building real-time data pipelines nowadays, offering
scalability, persistence, replication, and fault-tolerance.

This report aims to provide empirical evidence of the performance evaluation of the integrated
system, thus demonstrating its suitability with respect to meeting the operational requirements
that have been specified by the domain experts. Therefore, an experimental evaluation of the
integrated system is performed using real data sets from the two domains, in the datAcron cluster
that comprises ten computing nodes.

1
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1.2 Approach for the Work package and Relation to other Deliverables

Work package 1 “System Architecture and Data Management” is responsible for: (a) the underly-
ing system architecture and the integrated prototype of datAcron, and (b) the data management
layer of the datAcron infrastructure. In consequence, the current deliverable D1.13 is particu-
larly important for WP1, as it concerns the evaluation of the integrated prototype directly, and
indirectly the overall datAcron architecture.

D1.13 builds on several previous deliverables of WP1:

• D1.1 “Requirements Analysis” that provides a specification for the requirements of both
the integrated system as well as the individual constituent modules.

• D1.2 “Architecture Specification”, which is the system architecture reported on M12, and
later further refined during the project.

• D1.11 “Software design (final)”, which presents the software stack adopted in order to realize
the various modules, as well as the underlying communication platform.

• D1.12 “Integrated prototype (final)”, which is the concrete description of the integrated
prototype, as reported in month M33 of the project, and practically serving as the final
description of the integrated datAcron system.

• Several deliverables of technical work packages, namely: D1.9, D1.10, D1.11 (WP1), D2.3
(WP2), D3.3, D3.4 (WP3), D4.5, D4.6, D4.7, D4.8 (WP4), which present the innovative
methods and evaluate the optimized versions of the individual modules in more detail.

• Deliverables of work packages WP5 and WP6 describing the two use-case domains, mar-
itime and air-traffic management (ATM), especially the ones: D5.3, D5.4, D5.5, D6.3, D6.4,
D6.5.

1.3 Methodology and Structure of the Deliverable

This deliverable takes as input D1.12 describing the final version of the integrated prototype of
datAcron, and essentially performs the experimental evaluation in order to validate its perfor-
mance. The work methodology starts from the level of individual modules, in order to identify
the best parameterization with respect to external parameters to the module itself, i.e., cluster
and infrastructure-related parameters1. Then, the main focus of the evaluation is the integrated
prototype as a whole, and the achieved performance for different setups and configurations, most
notably with respect to the hardware resources provided to each module.

The remaining of this report is structured as follows:

• Section 2 presents succinctly an overview of the integrated prototype of datAcron, focusing
in flows of information and the architecture that encompasses all envisioned flows and
modules.

1Optimization of individual module operation with respect to internal parameters has been conducted in the
context of each work package and has been documented in the respective deliverables, therefore it is out of the
scope of this deliverable.

2
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• Section 3 describes in more detail the methodology followed for the evaluation of the dat-
Acron integrated prototype, focusing on the Kafka-based intercommunication that has been
adopted in datAcron.

• Section 4 demonstrates the evaluation results obtained when testing the performance of
the online part of the integrated prototype.

• Section 5 shows the performance and scalability of the batch processing part of the datAcron
architecture.

• Section 6 briefly summarizes the findings of the evaluation of the integrated prototype and
reports the main conclusions of this deliverable.

3
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2 Design of datAcron Integrated Prototype

The purpose of this section is to provide a succinct presentation of the datAcron integrated
prototype. The following sections discuss (a) the modules that implement the functionality
(Section 2.1), and (b) the flows of information materialized by means of the modules (Section 2.2).

Module Nr. Module acronym Module Title Task in Charge Work package

1) MDF Maritime raw data feeder T5.2 WP5

2) ADF Aviation raw data feeders T6.2 WP6

3) LED In-situ processing 1 – Low-level event detector T1.3.1 WP1

4) SG In-situ processing 2 – Synopses generator T2.1 WP2

5) SI Semantic integrator T1.3.2 WP1

6) DM Data manager T1.3.3 WP1

7) T/FLP Trajectory / Future location predictor T2.2 WP2

8) TDA Trajectory data analytics T2.3 WP2

9) CER/F Complex event recognition / forecasting (CER/F) T3.1-2-3 WP3

10) IVA Interactive visual analytics T4.3 WP4

11) Viz Real-time visualization T4.4 WP4

Table 1: The modules in the datAcron integrated prototype.

Figure 1: The datAcron Integrated Prototype.

Figure 1 illustrates the overall architecture of the integrated prototype. The datAcron mod-
ules are denoted by blocks in the diagram and links between them denote flows of information.
The yellow links indicate Kafka-based communication between modules. In-situ processing com-
ponents and the Semantic Integrator (SI) modules have direct access to third party data sources
such as weather forecasts and thematic/contextual source. The in-situ processing module con-

4
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sumes raw surveillance data (maritime or aviation) and the output is provided to SI. The output
of SI is consumed by modules Viz, IVA online, CER/F and FLP, which use Kafka for communi-
cation with other modules. The output of SI towards DM indicates the data loading operation
in the distributed RDF store maintained by DM. Finally, the flows from offline components (IVA
offline, TDA, CER/F) towards DM correspond to the querying functionality supported, which
allows spatio-temporal RDF queries and retrieval of corresponding data.

2.1 datAcron Modules

The datAcron architecture consists of the following modules listed in Table 1. A short description
of each module follows below.

• Raw surveillance data feeder (MDF/ADF): The raw surveillance data feed comprises
maritime data (MDF) from a range of terrestrial AIS receivers and 18 low earth orbit
satellites, and aviation data (ADF) from European Surveillance data feeds. The maritime
AIS data stream is collected, tested for veracity using a streaming analytics module, cleaned
and annotated with various error flags, and then filtered to provide the data required for
the datAcron project. The aviation data stream comprises Flightaware, ADSBExchange
and ADSBHub sources.

• In-situ processing: In-situ processing in general refers to the ability to process data
streams as close to the source where data originates. This part of the architecture contains
the Low-level event detector (LED) and Synopses Generator (SG):

– LED: In-situ processing is in particular challenging, when the stream processing of the
data requires additional input from other sources, either other instances of the stream
or from global system settings or user interaction. As a proof of achieving the ar-
chitectural integration of in-situ processing, datAcron has implemented a distributed
online learning framework on distributed streams as described in detail in D1.8, allow-
ing for faster adaptation of models to changes in real-time and providing an enriched
event stream for visualization in real-time. Based on this, event forecasting has been
extended towards distributed online learning as described in D3.5, making it possible
to learn forecasting models cross-stream from other moving objects.

– SG: The Synopses generator consumes streaming positioning messages of raw surveil-
lance data and eliminates any inherent noise such as delayed or duplicate messages.
Moreover, it identifies critical points along each trajectory, such as stop, turn, or
speed change, in order to provide an approximate, lightweight synopsis of movement
per moving object.

• Semantic integrator (SI): This module comprises two major parts: (a) it transforms data
from all sources to RDF w.r.t. to the datAcron ontology and (b) it discovers links between
entities in the RDF data. The first part is accomplished by RDFgen, which homogenizes
different sources and allow trivial links between sources to be detected. The second part
applies link discovery tasks (LD) and enriches the stream of positional information with
links to additional data required by the use case scenarios. Both RDFgen and LD have
been thoroughly discussed in Deliverable D1.9. The output of this module is also sent
directly to Data Manager for storage and future use.

5
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• Data manager (DM): Its functionality is to store information into a distributed spatio-
temporal RDF store and provide query answering facility.

• Trajectory / Future location predictor (T/FLP): FLP calculates motion functions by
harvesting the cleansed Kafka stream (from the Synopses Generator module). Specifically,
it consults the most recent locations of a moving object to predict its short-term future
location in real time, w.r.t. the tendency of the movement. Each predicted point is streamed
out in real time to other modules. Regarding TP , it presents a similar functionality
targeting at predicting the future trajectory of a moving object as far in time horizon as
possible.

• Trajectory data analytics (TDA): The goal of this module is twofold: on the one
hand it provides advanced analytics that serve specialized requirements in the datAcron
architecture (e.g. data-driven discovery of the networks/routes upon which the movement
of the vessels/aircrafts take place), while on the other hand it provides global patterns
that represent meta-models devised from the local patterns (e.g. clusters and sequential
patterns of trajectories).

• Complex event recognition/forecasting (CER/F): CER aims to real-time detection
of complex events, whereas CEF aims to real-time forecasting and prediction of complex
events. Both modules are working on synopses of moving objects generated by the two
in-situ processing modules (LED & SG). It also consults information provided by the link
discovery tasks performed in SI. The output of CER is a real-time stream with detected
events. On the other hand, CEF enriches the input stream with a forecast about the
probability of each monitored event pattern.

• Interactive visual analytics (IVA): The IVA module builds on top of the real-time
visualization module to provide limited analytical capacity on streaming data. The primary
use is to allow analysts, and possibly advanced operators, to fine-tune and observe the
impact of parameter adjustments to the T/FLP and CER/F modules compared to actual
data in (near) real-time. It therefore complements the situation monitoring capabilities
of the real-time visualization used by ordinary operators on the one hand (by providing
parameter settings to the detection modules), and the full-fledged VA suite used for in-
depth exploration and analysis in offline (strategic latency) settings.

• Real-time visualization (Viz): This module provides a map-based visualization of the
stream of enriched spatio-temporal events generated by the T/FLP and CER/F modules.
It is able to display different event types (e.g., critical points) simultaneously with indi-
vidual visual encoding for each type. In addition events associated with the same moving
object identifier are automatically integrated into trajectory representations so operators
can observe movement patterns. The overall design follows the “overview-first, zoom-and-
filter, details-on-demand” approach, meaning that operators can define filters on the input
stream to drill down on areas and event types of interest.

6
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2.2 datAcron Flows

The modules in the integrated datAcron system communicate through three different information
flows, classified as operational, tactical and strategic w.r.t. the reaction time 2.

In particular:

• Information management flows are about the reconstruction of trajectories and their en-
richment with useful annotation, which is to be performed online (operational latency),
and their storage for querying purposes, which is to be performed offline (tactical latency).

• Online analytics flows are about consuming the available streaming information, which is
to be performed online (operational latency); and

• Offline analytics flows are about consuming the available stored information, which is to
be performed offline (strategic latency).

Note that there exist three main consumers (namely, T/FLP, CER/F, and IVA), each op-
erating both online and offline. In turn, this means that 3 online flows concern these modules,
namely flows #3, #4 and #5, whereas the 3 offline flows are #6, #7 and #8. Table 2 presents
the list of flows (along with the respective latency type).

Flow Nr. Flow Title Latency

Information management flows

1) Trajectory reconstruction and semantic enrichment Operational

2) RDF storage Tactical

Online analytics flows

3) Trajectory/FL prediction online Operational

4) Complex event recognition / forecasting online Operational

5) Visual Analytics online Tactical

Offline analytics flows

6) Trajectory data analytics offline Strategic

7) Complex event recognition / forecasting offline Strategic

8) Visual Analytics offline Strategic

Table 2: The datAcron flows of information.

2Operational latency: milliseconds, Tactical latency: few seconds, Strategic latency: tens of seconds or minutes
(defined in Deliverable D1.1 “Requirements Analysis”)

7
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Figure 2: The datAcron Integrated Prototype (view equivalent to Figure 1) showing the flows
more clearly.

The functionality of each flow is discussed in the following paragraphs. In accordance with
the flows, Figure 2 illustrates the datAcron architecture, which is an equivalent view to the one
presented in Figure 1. Also, this illustration is a refined version of the architecture specified in

8
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Deliverable D1.2 “Architecture Specification”.

Flow #1: Trajectory reconstruction & semantic enrichment

• Short description: Maritime / Aviation raw data stream is (1a) cleansed, enriched with
derived information (e.g. speed) as well as low-level events (e.g. intersection with zones of
interest), synopsized by tagging “critical points” (change of heading or altitude, etc.), and
(1b) further enriched with info from other external data sources / streams (weather info,
etc.); the final output (1c) is streamed out to be consumed by other modules, including its
visualization (1d).

• Modules involved: Maritime / Aviation; LED; SG; SI; Viz.

Flow #2: RDF storage

• Short description: A subset of the enhanced surveillance data stream, i.e. the annotated,
synopsized surveillance data, as well as selected output streamed out by other modules is
(2a) processed and (2b) stored in the RDF store.

• Modules involved: DM.

Flow #3: Trajectory/FL prediction online

• Short description: T/FLP (3a) consumes the enhanced surveillance data stream (as well as
other streams, provided internally to the datAcron integrated prototype, if needed) for the
purposes of online trajectory / future location prediction and (3b) streams out its output
to be consumed by other modules, including visualization (3c). Also, prediction results are
stored in the form of Parquet files in HDFS for evaluation purpose.

• Modules involved: T/FLP; Viz.

Flow #4: Complex event recognition / forecasting online

• Short description: CER/F (4a) consumes the enhanced surveillance data stream (as well
as other streams, provided internally to the datAcron integrated prototype, if needed) for
the purposes of online event recognition / forecasting and (4b) streams out its output to
be consumed by other modules, including its visualization (4c).

• Modules involved: CER/F; Viz.

Flow #5: Interactive visual analytics online

• Short description: IVA consumes the enhanced surveillance data streams (3c, 4c), streamed
meta data on the T/FLP and CER/F modules (current parameter settings, 5a), and, if
needed, base data for comparison (1d) for the purposes of online VA; and (5b) streams out
its output (updated parameter settings, areas-of-interest) in KVP format to be consumed
by other modules.

• Modules involved: IVA; T/FLP; CER/F.

9
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Flow #6: Trajectory data analytics offline

• Short description: TDA (6a) queries the RDF store in order for complex patterns to be
discovered and (6b) stores selected results back to the RDF store for future use.

• Modules involved: TDA; DM.

Flow #7: Complex event recognition / forecasting offline

• Short description: CER/F (7a) queries the RDF store in order to fetch data for complex
events to be detected/forecasted and (7b) stores selected results back to the RDF store for
future use.

• Modules involved: CER/F; DM.

Flow #8: Interactive visual analytics offline

• Short description: IVA (8a) queries the RDF store to get large batches of raw data for
complex offline analysis and (8b) stores selected results (derived attributes, spatio-temporal
patterns, clustering results, parameter settings) back to the RDF store for future use.

• Modules involved: IVA; DM.

2.3 Online Part: Stream Processing

The majority of data analytics operations in datAcron are performed in an online fashion using
stream processing. These operations include data transformation and integration, as described
in FAIMUSS [6], trajectory compression and semantic trajectory construction, as presented in
SPARTAN [7], and complex event recognition supported by efficient spatio-temporal link discov-
ery, as outlined in [9].

2.4 Offline Part: Batch Processing

The main component responsible for the batch processing in the datAcron architecture is the
distributed spatio-temporal RDF engine [2]. Figure 3 depicts the architecture of the datAcron
distributed RDF engine. It has been designed and built from scratch during the course of the
project. By design, the datAcron distributed RDF engine targets the following objectives:

• Scalable storage and processing for vast volumes of RDF data, in the order of Billions of
RDF triples (targeting the Volume dimension of Big Data)

• Support for spatio-temporal RDF data, i.e., RDF data which are mostly associated with
spatio-temporal information

• Efficient processing strategies that employ optimization techniques, in order to prune sig-
nificant subsets of data and reduce execution time

10
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• A prototype implementation that includes the functionality provided by a typical data
warehouse system, from loading data to querying and optimization.

Application layer

Processing layer

Storage layer

Encoded RDF data Dictionary

Query Parser

Encoder

Data Loading

SPARQL

Statistics

Logical Optimizer
Execution 

engine

Decoder

Results

Statistics 
Manager

Physical 
Optimizer

Encoded RDF data Dictionary

REST API

Logical Query Planner

Physical Query Planner

Figure 3: Overview of the datAcron distributed RDF engine.

The datAcron distributed RDF engine encompasses two main layers: (a) storage layer, and
(b) processing layer. In addition, an application layer has been introduced to demonstrate the
offered functionality and allow its use by external applications.

An application that uses the datAcron distributed RDF engine can use two main operations:
data loading and querying.

The data loading operation considers as input an RDF data set that can be arbitrarily large.
In the context of datAcron, this data set consists of spatio-temporal RDF data and it is the
output of the online data transformation and link discovery components described in Deliverable
D1.9. During data loading, the RDF data is encoded to integer values based on the Encoder [12].
The Encoder produces as output encoded RDF data and a dictionary that allows decoding of
integer values back to strings (URIs or literals). The encoded RDF data is stored in HDFS,
whereas the dictionary is stored in-memory using REDIS, a scalable in-memory distributed key-
value store. In addition, during the data loading operation, the Statistics Manager computes
various statistics about the loaded data, which are also stored to be used during query execution,
in order to derive an optimized query execution plan.

The querying operation takes as input a SPARQL query, which is directed to the processing
layer of the engine for query evaluation, and provides the matched RDF triples as result. The
processing layer is implemented in Apache Spark, a state-of-the-art solution for batch, in-memory
processing of Big Data. First, the SPARQL query undergoes query parsing, which aims to ensure
correct formulation and to represent it as a logical query plan that can be manipulated by the
other components of the processing engine. The logical query plan is given as input to the logical
optimizer whose role is to perform a set of standard optimizations (such as deciding the order
of join operations), and generate a set of potential physical execution plans. Then, the physical
optimizer examines these physical plans and performs cost-based optimization, also exploiting the
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available statistics, to select the best physical execution plan. This is provided to the execution
engine that performs query processing and provides the resulting RDF triples. Prior to result
delivery to the application, a decoder performs translation of the encoded triples back to their
string representation.
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3 Evaluation Methodology

This section describes the methodology adopted for the evaluation of the integrated prototype
as well as the underlying technical details related to the communication of the datAcron com-
ponents. To this end, first, a brief technical description of components is provided. Then, the
intercommunication mechanism is presented, which is based on Kafka, and serves as the com-
munication platform for the implemented online flows in datAcron. Finally, the mechanism for
measuring the performance of Kafka-based communication is presented, which is used in our
experimental evaluation.

The evaluation methodology has been designed so as to cover two main aspects: stream/online
processing and batch/offline processing, in order to demonstrate the basic functionalities provided
by the integrated prototype end-to-end.

Regarding stream/online processing, we choose to evaluate flow #1 (trajectory reconstruction
and semantic enrichment), which is the fundamental processing flow of online processing in
datAcron, as it “feeds” the prediction/forecasting components with an appropriately enriched
stream of data.

Regarding batch/offline processing, we evaluate the interoperability of trajectory clustering
(as a representative data analysis technique) with the distributed RDF store that provides the
necessary batch processing of integrated data. In this way, the evaluation covers both aspects of
Big Data processing in the context of datAcron.

3.1 Technical Description of Components

In the following, a brief technical description of each component is provided, focusing mainly on
implementation aspects related to the parallelization of processing. The implemented compo-
nents have been developed using Big Data technologies, and owe their efficiency and scalability
to the underlying parallelization techniques used for partitioning the work to different computing
nodes in a cluster.

3.1.1 Trajectory Synopses component

The Trajectory Synopses component [3, 4] is written in Flink. Since maintaining state and com-
munication turned out to be troublesome (see the corresponding deliverable D2.3) the trajectory
synopses application uses a utility called KafkaSplitter to partition the incoming stream into
multiple Kafka Topics. Then, multiple Flink instances of the Trajectory Synopses application
are launched each reading from a single Topic.

Because of the fixed partitioning policy that Flink uses, by default all instances of the appli-
cation wrote their result in the first partition of the Kafka Topic. To overcome this limitation, a
custom partitioner that writes to different partitions for each instance has been implemented.

3.1.2 RDFgen

The RDFgen component [8] is at its heart a simple Map function that takes as input the result
of the Trajectory Synopses component and returns the result as an RDF fragment. Since it is
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a simple Map function with no need for aggregations or complex load balancing we tried two
approaches:

1. A YARN container implementation. This implementation takes the multi-threaded Java
implementation and launches multiple instances inside YARN containers.

2. A Flink implementation. This implementation uses the single thread logic of the RDF-
gen as a basis for a Map function in Flink. Flink then takes care of the launching and
parallelisation of the application.

3.1.3 Link Discovery Framework

The link discovery tasks in datAcron project are mainly proximity and topological relations
between spatio-temporal representations of entities reported in the datAcron data sets. We have
extended the baseline grid partitioning technique with the MaskLink approach [5]. MaskLink
exploits the empty space of the cells, to prune comparisons between entities of the source and
target data sets. Salient features of MaskLink include that it has been designed both for point-
to-point and point-to-region topological and proximity relations, and can operate with streams
as inputs. Supporting proximity relations in the context of link discovery of spatio-temporal data
should be emphasized, since existing works have only targeted topological relations.

However, the benefits of MaskLink are highly dependent to the data sets used. Specifically,
the first observation is that if we obtain a spatial distribution of target data set, s.t. each cell has
exactly one geometry, there is no use for mask, since the baseline method also needs exactly one
comparison to decide whether a link holds. Another important observation, is that the method
can be used in data sets that are known to allow empty spaces between spatial representations of
entities in the target data set. Such data sets in datAcron project are Fishing regions, coastlines
of island clusters (e.g. as in Aegean Sea), Natura2000 regions. Apparently, it cannot be applied
when the geometries of the target data set are adjacent with is no emtpy space, since the method
is regressed to the baseline method (i.e., grid partitioning). Such data sets in the datAcron
project, are the Exclusive economic zones (EEZ), the Administrative regions, and the airblocks
or sectors of airspace configurations.

Parallel Link Discovery Porting the MaskLink method to a parallel processing environment
(e.g. Flink), requires the definition of: a) how data are partitioned to workers, and b) what data
are replicated across the workers.

In addition to that, the link discovery component has to satisfy the requirement that all the
information about a single entity (including the discovered links) should be provided as a single
message in the output, i.e. a self-contained RDF graph fragment. This requirement is set by
datAcron components that directly consume data computed by the link discovery tasks, and it
can be omitted when components directly request data from the triple store (i.e. since in this
case the way triples are provided from the link discovery task, does not affect the results of the
triple store).

The first approach was to distribute the link discovery task per cell to workers, i.e. it partitions
the data sets by space and replicates the grid (or part of the grid) to the workers. In this approach
each worker is responsible for a (non-empty) set of cells of the grid, and evaluates each spatio-
temporal representation reported in its cells, independently from the rest of the workers.

This approach however is not adaptive to the distribution of data, i.e. there can be a data set
s.t. most of the work load will always be assigned to only a few (or only one) workers. One such
example in the datAcron project is the link discovery task for detecting “within” 3D relations
between surveillance positions and 3D airblocks. Figure 5 illustrates the distribution of source
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Figure 4: The abstract illustration of the grid based LD approach

data set entries in the cells of a 3.5x3.5 grid. We observe that five cells contain more than 3∗105
entries, i.e. these workers will have most of the workflow for this data set. Configuring a more
fine grained grid will not solve the problem, i.e. some regions (e.g., close to airports) will always
have more dense data compared to the rest of the covered space.

A different approach that is more prominent to handle skewed data, and achieve a balanced
load distribution, is the construction of a spatial index from the target data set, and assign to
workers the refinement tasks, as illustrated in Figure 6. In this case, we partition the data set
per entity (i.e. by ID), but we have to replicate the spatial index. The method is initialized
with the population of the spatial index by entities of the target data set. Next, for each spatio-
temporal representation reported in the source data set, the spatial index is queried and the set
of candidate entities of target data set for comparison are selected. This set also specifies the set
of refinement tasks to be carried out by workers. Each worker will compute all the comparisons
of a single source data set entity, independently from the rest of the workers. Thus, this method
is expected to achieve better load distribution to workers, compared to grid-based approaches.
On the other hand, the spatial index is replicated to the workers, thus the method cannot be
used for huge or streaming target data sets.

This method has been implemented with STR-Tree as a spatial index. The STR-tree is
a query-only R-tree created using the Sort-Tile-Recursive (STR) algorithm [1] to use for two-
dimensional spatial data. We have selected the STR packed R-tree, since it maximizes space
utilization, i.e. as many leaves as possible are filled to capacity, while overlap between nodes is
far less than in a basic R-tree. The STR-Tree is broadcast to all the workers.

3.2 Kafka as Message Bus

Deliverable D1.2 which describes the datAcron system architecture has documented and justified
the choice of Apache Kafka as intercommunication platform for the online datAcron components.

Nowadays, Kafka is the de-facto message bus for Big Data architectures, due to its salient
properties including high performance, built-in partitioning, replication and fault-tolerance. In
addition, Kafka is compatible with a variety of Big Data processing frameworks, such as Apache
Spark or Apache Flink, which are the preferred development frameworks in datAcron for the
various components.
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Figure 5: The distribution of spatio-temporal representations provided by source data set in a
grid with cell size 3.5x3.5

Figure 6: The abstract illustration of the spatial index implementation.
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Figure 7: Kafka partitioning.

Kafka is a distributed, partitioned, replicated commit log service. The unit of data within
Kafka is called a message. A message typically corresponds to a record or a row of a relational
table.

Kafka Topics. Each message in Kafka is a key-value pair. Kafka maintains feeds of messages
in categories called Topics. Each Topic is partitioned for scalability and Partitions are distributed
in the cluster. Figure 7 illustrates a Kafka Topic that contains four partitions, depicted using
different colors. Essentially, a data set that is published as Kafka Topic can be split in different
partitions. The default partitioning strategy is hash partitioning based on the value of the
key. The user can also define a custom partitioning strategy to accommodate complex business
logic. Topic partitioning enables applications that will read data from the Topic to consume
simultaneously different pieces of data, i.e., read from different partitions.

For efficiency, messages are written into Kafka in batches. A batch is just a collection of
messages, all of which are being produced to the same topic and partition. A partition is a single
log. Messages are written to it in an append-only fashion, and are read in order from beginning
to end. A topic generally has multiple partitions and there is no guarantee of time-ordering of
messages across the entire topic, just within a single partition.

Kafka Brokers. A Kafka architecture in a cluster consists of Kafka brokers, which are essen-
tially the server nodes of the cluster. In other words, Kafka runs in a cluster comprised of one
or more servers each of which is called a broker. Partitions allow parallelization by splitting the
data in a particular topic across multiple brokers.

Thus, each broker maintains a number of partitions and each of these partitions can be either
a leader or a replica for a topic, as depicted in Figure 8. All writes and reads to a topic are
directed to the leader partition, which is responsible for updating the replicas in order to keep
them consistent. Also, this replication mechanism is exploited in the case of failure of a leader;
in such a case, a replica is assigned the role of new leader.

Kafka Producers and Consumers. Processes that publish messages to a Kafka Topic are
called Producers. Processes that subscribe to Topics and process the feed of published messages
are called Consumers. Consumers work as part of a consumer group. This is one or more
consumers that work together to consume a topic. The group assures that each partition is only
consumed by one member.
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Figure 8: Kafka brokers and partitions of a topic (partitions with texture correspond to leader
partitions, whereas partitions with solid coloring correspond to replicas).

Figure 9: A Kafka producer publishes a topic and two Kafka consumers read from the topic.

A Kafka broker receives messages from producers, assigns offsets to them, and commits the
messages to storage on disk. It also services consumers, responding to fetch requests for partitions
and delivering the messages that have been committed to disk.

Kafka Partitioning. Partitioning of Topics is the standard way of achieving parallelism in
Kafka. Since each consumer in a parallel processing framework can poll at least one partition
of a Topic and no two consumers in the same consumer group can poll the same partition, the
partitions of a Topic implicitly determine the available parallelism for the application. This is
why for the standalone measurement of the components we ensure that the number of partitions
in the input topic is at least as high as the number of consumers in the application.

3.3 Kafka Interceptors

Kafka Interceptors are a mechanism provided by Kafka to mutate records before they are received
by the poll function (Consumer Interceptors) or before sending them over the wire (Producer
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Interceptors).
In our case we use Producer Interceptors to measure latency on the packets before they are

sent over the wire.
To measure the latency of each flow using Kafka Interceptors we use the following procedure.

1. For each record entering the datAcron pipeline we have a field called IngestionTimestamp

2. The consumer interceptor records the current time in milliseconds when the record enters
the pipeline into the IngestionTimestamp field. The latest versions of Kafka (since Kafka
0.10) have also this field into each record and if the end user does not want to use the
Consumer Interceptor all he has to do is to record the current time in milliseconds and
enter it into the IngestionTimestamp field.

3. Just before the processed record is about to get into the wire, we measure the latency
for the record using a Producer Interceptor in which we have overridden the OnSend
method. The OnSend method is the method called by Kafka just before the data is sent
over the wire.

In our test case each Kafka Producer records the totalLatency for all records, the minimum
and maximum latency as well as the average latency.

3.3.1 Guidelines

According to the guidelines provided to WP2 and WP3, to measure latency using Kafka Inter-
ceptors the user (in our case “component developer”) has to perform the following steps:

1. Create his version of consumer and producer interceptors using our code listings as a
starting point. Alternatively the user can Import Interceptors for the data types of the
datAcron project, using Gradle3 as the build system.

2. Import the consumer and producer interceptors in the consumer and producer properties
respectively. The consumer and producer properties is a hash table containing settings for
the Kafka Producers and Consumers respectively.

In our use case we make the assumption that each record entering the pipeline exits the
pipeline enhanced with new information. The input and output datatypes do not need to be the
same, but if they are not we cannot use the Consumer Interceptor.

If the assumption above does not hold then the user must inject the IngestionTimestamp
field at the start of the processing for each output record and use the producer interceptor to
measure the latency.

Our implementation of the Interceptors measures the minimum, maximum and average la-
tency. One way to provide more fine-grained information is to have the Kafka Topics serialized
into a file and then acquire the latency for each message by using the ingressTimestamp and
outgressTimestamp fields.

3.4 Prometheus TSDB for Monitoring Kafka and Spark Applications

In the datAcron cluster, we have setup a Prometheus time-series database (TSDB) to monitor
the number of messages inside Kafka Topics as well as the performance of Spark Applications.

3https://gradle.org/
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Prometheus is an open-source systems monitoring and alerting toolkit originally built at Sound-
Cloud4.

• It is a standalone Go binary

• It provides an HTTP Interface to get the metrics

• It provides a query language, PromQL to get values and aggregates

Each broker in the cluster is tied to a JMX exporter, that exposes JMX beans as json over HTTP.
The master node of Spark application also exposes JMX beans in a similar manner. The master
node runs a prometheus TSDB, that scrapes the JSON objects from multiple nodes at regular
time intervals.

4https://prometheus.io/docs/introduction/overview/
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4 Evaluation Results: Online Part

In this section, we present the evaluation of the integrated prototype performed in the datAcron
private cluster. As the cluster has limited resources (10 computing nodes), this puts a barrier to
testing scalability, since setups with higher provision of resources cannot be tested.

In the following, we first describe the cluster setup in Section 4.1, along with details about the
experimental evaluation. Then, in Section 4.2, we perform the standalone component evaluation,
which is helpful in order to identify tuning parameters for each component individually. In
Section 4.3, we evaluate the performance achieved by a selected sequence of components that
run simultaneously as a pipeline. Finally, we discuss the overall results in Section 4.4.

4.1 Experimental Setup

In a nutshell, the datAcron cluster is comprised of 10 computing nodes in total located in a rack.
Three nodes are configured as Kafka brokers, but they can also run other tasks. The hardware
specifications for each computing node is as follows:

• 2*XEON e5-2603v4 6-core 1.7GHz with 15MB cache

• 128 GB of RAM

• 256 GB SSD

Methodology Our main focus is on the stream processing part of the datAcron architecture,
which consists of many components that interact and intercommunicate to achieve the required
functionality.

More specifically, we focus on the components that perform trajectory compression, data
transformation to RDF, and link discovery, as this chain of components is the most critical for
serving higher-level components, and at the same time perform the most resource-demanding
operations.

Therefore, the evaluated system takes as input raw surveillance data, generates synopses,
performs trajectory reconstruction, transforms trajectories in RDF based on the datAcron on-
tology [10, 11], and links trajectory positions with information about crossed 3D sectors.

Data sets To evaluate the integrated prototype we use data from the air-traffic management
(ATM) use-case and domain. The reason is that this is the more challenging setup, since in the
maritime domain data is 3D and not 4D.

In particular, we use surveillance data from the data source IFS, covering the area of Spain
for the period of April 2016.

In addition, we use a contextual data source that consists of 3D sectors, as we are interested
to link an aircraft’s surveillance data with those sectors crossed by the aircraft.

Kafka configuration The Kafka Producers have been configured with the following settings
aimed to provide a middle ground between throughput and latency requirements:

1. batch.size 16384
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2. buffer.memory 33554432

3. compression.type = none

4. linger.ms = 1

Metrics In the evaluation, we use the following metrics:

1. Throughput : expressed as number of messages per second.

2. Speedup: defined as the throughput achieved by the parallel version of a component (or
sequence of components) divided with the throughput of the exact same component with
parallelism equal to 1, i.e., centralized case.

3. Latency : the average, minimum and maximum processing latency of each component.

4.2 Standalone Component Evaluation

For the evaluation of individual components as “standalone”, we use the following ones:

• Trajectory synopses generation (SG)

• Data transformation to RDF, also mentioned as “RDFizer” in the following, which is part
of Semantic Integrator (SI)

• Link discovery component, which is part of Semantic Integrator (SI)

In this way, we evaluate both the functionality of in-situ processing as well as the semantic
integrator, which comprise the backbone of the datAcron streaming architecture. This provides
an adequate view of the system bottlenecks. At the end of this chain of components, any other
(online or offline) component can be added.

We measure the performance and scalability of each component, when varying the level of
parallelism from 1 (centralized execution) to 60. The level of parallelism corresponds to the
number of different tasks initiated in the cluster.

4.2.1 Trajectory Synopses Generation

Figure 10 shows the throughput results obtained for all components. In terms of throughput, the
Synopses Generator (SG) scales very well on Flink achieving 100K messages/sec using 9 workers
and 360K messages/sec for 20 workers. The run with the 40 workers shows worse performance,
because there were not enough resources in the YARN cluster to be allocated for the execution.
Therefore, for this component, it does not make sense to test higher level of parallelism in the
given infrastructure.

Figure 11 depicts the speedup for all components. The Synopses Generator (SG) achieves
a speedup of 8x for 9 workers, and 31x for 20 workers. Recall that the speedup has been
defined using messages/sec as unit of measurement, and practically shows the scalability of the
component due to parallelism, compared to the centralized case.

Figure 12 depicts the latency for all components. The average latency the Synopses Generator
(SG) is around 60 msec for the setup of 20 workers. This is an improvement over the centralized
case, where the average latency is around 120 msec. This result shows that the trajectory
synopses generation process manages to meet the requirement of operational latency.
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Figure 10: Standalone Component Evaluation: Throughput in messages/sec.

4.2.2 RDFgen

We have tested two different ways to parallelize the data transformation to RDF. In the first
case, we simply run the RDFgen application on YARN, thus parallelizing the application by
execution in multiple nodes and cores. In the second case, we test a Flink-based implementation
of the RDFgen, where parallelization is performed by Flink.

RDFgen on YARN The RDFgen on YARN scales really well up to 60 virtual cores achieving
a performance of 76K messages per second (Figure 10) and a speedup of 55x (Figure 11).

In Figure 12, the latency remains under 2 msec for all executions of the RDFgen. This proves
that the RDFgen can scale really well for large number of cores.

RDFgen on Flink Executing RDFgen on Flink seems to scale worse than its counterpart
in YARN. More specifically for 60 virtual cores the RDFgen achieves throughput of 20K mes-
sages/sec (Figure 10) and a speedup of 16x (Figure 11).

The above results suggest that while running the RDFgen on Flink seems to add unnecessary
overhead, it also seems to help scalability. For all the experiments on Flink the latency was less
than 1 msec (Figure 12).

4.2.3 Link Discovery

For the link discovery task, as explained in Section 3.1.3, we employed two variants, one based
on MaskLink and one using the STR-Tree.
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Figure 11: Standalone Component Evaluation: Speedup.

MaskLink For the evaluation of the LD component we use a grid constructed by cells of
3.5× 3.5 degree. As discussed in section 3.1.3, MaskLink method is beneficial in data sets where
spatial representations of entities are not adjacent, i.e. there is an amount of “empty” space
within cells. In this set of experiments, we evaluate MaskLink on detecting within (in three
dimensions) relations between surveillance data (source data set) and 3D airblocks (target data
set). Since this target data set leaves no empty space in the cells and the source data set is highly
skewed, this configuration can be considered as the worst case scenario. Figures 10, 11 and 12
illustrate the throughput, speedup and average latency respectively, in configurations varying
from 1 to 60 workers. We observe that the configuration of 9 workers achieves the maximum
speedup, which can be explained by the skewness of the source data set, i.e. although we provide
more workers, a large number of records in the source data set will be processed by the same
workers. Although, we can use a more dense grid (i.e. cells of size less than 3.5× 3.5) to exploit
more workers, the skewness in the source data set will always force a number of workers to
become a bottleneck for the overall scalability.

STR-tree LD The STR-tree index employed in the LD component is useful in configurations
where target data set is expected to contain adjacent spatial representations and source data set
is skewed. The STR-tree index is built from the target data set instead of cells of a uniform grid,
prior to processing the source data set for link discovery. Figures 10, 11 and 12 illustrate the
throughput, speedup and average latency for the LD component when exploiting the STR-tree
index. We observe that the maximum speedup is now detected in the configuration of 40 workers.
We also observe that this configuration achieves higher throughput and lower latency compared
to the configuration without STR-tree, as a result of better distribution of load to the workers.
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Figure 12: Standalone Component Evaluation: Latency in msec.

4.3 Evaluation of Chain of Components

Apart from the single component evaluation we run an end-to-end typical scenario using the
datAcron architecture. Each component was given the same amount of resources per run; 9 and
20 in our case. Each component was given the same amount of resources to keep the number
of Kafka partitions the same, so that all the components can achieve maximum parallelism. We
used the Flink variant of RDFgen, and STR-Tree for the link discovery method.

Figure 13 depicts the obtained results. The end-to-end throughput is determined by the
slowest component. For parallelism equal to 9 the integrated prototype achieves 3.5K messages
per second for the slowest component. All the components of the architecture exhibit more or
less the same performance. Note that the performance of the trajectory synopses component
seems lower because this time we measure its throughput by the emitted critical points and not
by the number of locations processed. This is because in our architecture we transform to RDF
and store only critical points. In a real-life scenario, we would be interested in how many critical
points are emitted, while for benchmarking purposes in standalone mode we would be interested
in how many input records are processed per second to keep the measurements comparable to
the other components.

For parallelism equal to 20 both the trajectory synopses component and the RDFgen seem to
scale well, while the Link Discovery framework exhibits the same performance as in the 9 node
case. This could be due to resource contention in YARN.

25



D1.13 Integrated prototype evaluation report H2020-ICT-2015 31/12/18

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

9 20

Th
ro

ug
hp

ut
 (m

es
sa

ge
s/

se
c)

Parallelism

SG
RDFgen(Flink)

LD(STR-Tree)

Figure 13: Integrated Prototype Evaluation: Throughput in messages/sec.

4.4 Discussion of Results

In this section, we discuss the obtained results from the online part of the architecture in the
context of the datAcron objectives:

• The individual online components achieve operational latency (under 1 sec), with appro-
priate parameterization, thus matching the requirements set at deliverable D1.1.

• The Synopses Generator and RDFgen achieve always latency lower than 100 msec, and in
most setups much lower.

• The Link Discovery component, which performs the most compute-intensive operation,
exhibits operational latency when the appropriate technique is used (see the benefits of
STR-Tree over MaskLink for the specific link discovery task evaluated in this report).

• The Kafka-based intercommunication has enabled efficient access to the output of compo-
nents, without imposing significant overhead in the overall latency.

• In terms of throughput, all online components demonstrate scalability when provided with
more resources. The Synopses Generator and RDFgen can exploit the provisioned resources
better, and demonstrate high scalability, as shown by the speedup measurements.

• The Link Discovery component also demonstrates high throughput when provided with
more resources, however its speedup is lower than the other two components, which is due
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to the complex join operation that needs to be performed to identify links between data
sets.

• In the tested setups, the integrated prototype achieves throughput of more than 3,000
messages/sec, when each component is provisioned with 20 workers (parallelism).

• The bottleneck in the integrated prototype is the Link Discovery component, which is
natural as it performs the most complex operation, combining different data sets and
computing complex geometrical relations. However, acceptable throughput values (more
than 3,000 messages/sec) are achieved with reasonable level of parallelism.
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5 Evaluation Results: Offline Part

In this section, we present the results from the offline part of the architecture. This is briefly
termed as DiStRDF and has been presented in [2]. The main component is the datAcron dis-
tributed RDF engine, outlined in Section 2.4, therefore we turn our attention to its performance
and scalability. Data analytics components are served with data from the distributed RDF
engine, in order to perform their task. Our algorithms are implemented using Scala 2.11 and
Apache Spark 2.1.

Parameter Values

Spatio-temporal range sizes 10%, 20%, 40% (of the data set spatio-temporal size)

Queries Maritime: (Q1, Q2, Q3), Aviation: (Q4, Q5, Q6)

Physical plans Sort-Merge Join, Broadcast Hash Join

Number of Spark executors 2, 4, 9

Table 3: Experimental setup parameters (default values in bold).

5.1 Experimental Setup

Data sets We used surveillance and static information from the maritime and aviation do-
mains. The maritime surveillance data concern the entire month of January 2016, covering the
Mediterranean Sea and part of the Atlantic Ocean. The aviation surveillance data refer to a week
of April 2016, covering the entire space of Europe. We use the datAcron ontology described in
[10] to represent all data in RDF format.

The total size of the data set is roughly 400 million triples: 300 million triples from the
maritime and 100 milliton triples from the aviation domain. These triples were encoded to integer
values using the method described in [12] to form the one-triples table, which is approximately
9GB in text format or 4GB in Parquet format using snappy compression. We also built property
tables for the Semantic Node and Vessel entities of datAcron Ontology to enable efficient access to
their corresponding properties during query execution. In this section, we experiment with data
stored in HDFS using Parquet file format, to enable efficient access for our Spark applications
and benefit by columnar storage, compression and predicate push-down.

A dictionary containing the mapping between encoded and decoded values was also created
and stored in a Redis cluster instance, running on our cluster, with no replication enabled. The
total number of records (key-value pairs) stored in the Redis dictionary is approximately 106
million.

Configuration We configured Spark on YARN, using Hadoop 2.7.2. One node was set to
be the driver node, while the others contain the Spark Executors. All experiments conducted,
use executors with 5 CPU cores and 8GB memory. We experiment with different number of
executors, in order to test scalability. Providing a higher number of executors corresponds
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to higher resource provision and should increase the parallelism of the application. HDFS is
configured with replication factor of 3. We also used the Jedis 5 library, to communicate with
the Redis cluster.
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(a) RDF graph for maritime domain.
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(b) RDF graph for aviation domain.

Figure 14: RDF graphs for queries on maritime and aviation domains.

Type of queries We conducted experiments using 6 real-world SPARQL queries from both
aviation and maritime domains. Queries 1 and 4 are comprised of three triple patterns each and
require no join operation to be evaluated, since their triple patterns are already joined in the
property tables formatted data source. Queries 2 and 5, are composed of four triple patterns
each, requiring a single join operation to be actually evaluated. The rest queries 3 and 6, contain
five triple patterns, and require 2 join operations to be evaluated during query execution. All
queries are presented in SPARQL format in Appendix B.

Figure 14 shows the parts of the RDF graphs which correspond to the evaluated queries. The
left graph (Figure 14a), depicts the RDF graph for the first three queries, which refer to the
maritime domain, while the right part (Figure 14b), demonstrates the RDF graph for queries 4
to 6, on the aviation domain. For convenience, the relationships between RDF resources which
are pre-computed in the property tables, are depicted as solid lines. Hence, the dashed lines
represent the join operations, which should be computed during execution time. For exam-
ple, the property hasWeatherCondition is stored in the leftover triples data source, while the
hasHeading property is stored in the property table; the first property requires a join to com-
pute its relationship with node1, while for the second property, the join is pre-computed in the
data source. Interestingly although both queries 3 and 6 require two join operations each, they
actually perform different types of queries: Query 3 performs two star join operations, while
query 6 performs chain join operations.

Furthermore, we added a spatio-temporal range constraint to all of our experiments. We use
various ranges of different sizes, based on the volume of total space and time that they cover,
namely 10%, 20% and 40%. Put differently, each query has an associated spatio-temporal filter
that is applied on the data set, and (for instance) 10% means that the size of this filter in space
and time is equal to one tenth of the data set’s spatial and temporal extent.

5https://github.com/xetorthio/jedis
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Metrics Our main evaluation metric is the execution time needed for each SPARQL query to be
processed on the Spark cluster. We focus on measuring the actual execution time needed for our
queries to be evaluated, thus omitting (a) any overhead caused by Spark initialization processes
and (b) the time needed to store the result set in HDFS. In technical terms, we measure only the
time needed to calculate the result set in main memory, by executing a call to the count method
of the Spark DataFrame containing this result. Moreover, we ran each experiment 10 times, as
a warm-up procedure, and report only the time needed for the 11th execution. This warm-up
procedure, ensures that the cost of the Java JIT compiler and the overhead for establishing
connections to the Redis cluster from all YARN containers is also omitted.

Methodology All of our experiments are executed on both maritime and aviation domains.
Furthermore, for each experiment, we also vary the size of the spatio-temporal range constraint.
We evaluate the scalability of DiStRDF, by varying the number of Spark executors. Lastly we
experiment with Sort-merge Join and Broadcast Hash Join physical operators. Our experimental
setup is summarized in Table 3, which marks default values in bold.

5.2 Results

Comparing the Performance by Varying the Number of Executors: Figures 15 and 16
demonstrate the execution times needed to evaluate queries from maritime and aviation domains
respectively, by varying the number of employed Spark Executors. Essentially, this set of ex-
periments is an indication of the scalability of our approach, since they demonstrate the case of
having fewer nodes to evaluate the result set.

By using a spatio-temporal range query, Spark performs data processing only on the subset
of executors which contain data satisfying that constraint. Since our data is partitioned by
their spatio-temporal position, a range query might be satisfied by using only a small set of
executors. As such, the case of the 10% range size query, clearly benefits by this partitioning
scheme, since in Figures 15a,15b,15c its performance is not affected by the number of executors.
However, in aviation queries (Figures 16a,16b,16c), the 10% range size query benefits slightly
less by the partitioning scheme, since more nodes are involved to the query evaluation, especially
in Queries 5 and 6. The results in the rest of this set of experiments, perform as expected: more
executors lead to higher efficiency, especially for the 40% range size queries, which process the
larger volume of data. Hence, our DiStRDF system is able to efficiently process higher volume
of data, by providing more executors to the cluster.

Comparing the Performance of Physical Join Operators: Figures 17 and 18 demonstrate
the impact on query evaluation performance for maritime and aviation queries respectively, by
selecting different physical join operators. Queries 1 and 4, do not perform a join operation, thus
are excluded from this set of experiments.

Generally, the Sort-merge join operator performs better than the Broadcast join operator.
These results can be justified by the fact that a broadcast hash join performs better for small
sets of input data, whereas the queries of our experiments provide large sets of data to the
join operators. Sort-merge operator also benefits by the the executor’s shared memory between
executor cores. By exploiting the executor’s shared memory, Spark is able to exchange data
between executor cores without transferring them over the network. Since we used 5 CPU cores
per executor, our experiments had plenty of data being exchanged locally on the executor’s
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Figure 15: Performance of DiStRDF when varying the number of Spark Executors on maritime
data.

shared memory. It is also worth noting that Sort-merge Join algorithm, as implemented by
Spark SQL API, performs a re-partitioning of the entire data set, to a user configurable number
of partitions. This number was set to be 20 during this set experiments.

As expected, the experiments having 40% range size, perform worse than the others, since the
approximate filtering is able to prune less data early. This leads to more data being forwarded
to the parent join operators, thus increasing their computational cost, especially for the case
of Broadcast Hash Join operators. Also, the impact of selecting a physical join operator is less
significant in Figures 17a and 18a, when compared to Figures 17b and 18b where only a single
join is computed during query execution.

5.3 Discussion of Results

In this section, we summarize and discuss the obtained results from the offline part of the
architecture in the context of the datAcron objectives:
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Figure 16: Performance of DiStRDF when varying the number of Spark Executors on aviation
data.

• We tested the performance and scalability of the distributed datAcron RDF engine using
real-life queries over data in the order of 0.5 billion triples and returning integrated data.

• All queries were processed in few seconds, thus achieving the objective of tactical latency,
as specified in deliverable D1.1.

• Scalability has been studied under three aspects: (a) when the number of executors is
increased, which reflects the parallelism and the efficiency of the engine, (b) when using
queries of increased complexity, and (c) when queries with larger output size are used,
which reflects the scalability with query result size.

– The first important finding is that we achieve higher performance, in terms of lower
execution time, by the provision of more executors in Spark. This shows that the
engine is indeed scalable when provided with more resources.

– The second observation is that the complexity of the query affects the execution
time significantly, since very complex queries that require many join operations over
distributed data clearly require more processing time.
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Figure 17: Performance of DiStRDF when varying the physical join operator on maritime data.
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Figure 18: Performance of DiStRDF when varying the physical join operator on aviation data.

– Another significant factor affecting performance is the size of data that needs to be
accessed for query processing, which is also reflected in the query output size. The
respective experiment shows that the distributed datAcron RDF engine scales well
with increased query output size.

• The distributed datAcron RDF engine achieves the objective of efficient distributed man-
agement and querying of integrated spatio-temporal data.
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6 Concluding Remarks

This report has the objective to serve as the evaluation of the datAcron integrated prototype,
focusing on the two parts of the architecture: online (stream processing) and offline (batch
processing).

For the online part, we have presented the evaluation methodology, which relies on the use
of Apache Kafka as message bus for the intercommunication of the datAcron components. We
have focused on the fundamental processing flow of online processing in datAcron, namely tra-
jectory compression, transformation to RDF, and link discovery, as it “feeds” all other predic-
tion/forecasting components with an appropriately enriched stream of data. The experiments
have shown that all components achieve operational latency, under appropriate parameteriza-
tion. Also, when the entire chain of components is evaluated, and given the available resources
in the datAcron cluster, we observe a throughput value of more than 3,000 messages/sec.

For the offline part, we demonstrated the efficiency and scalability of the distributed datAcron
RDF engine: (a) when the number of executors is increased, which reflects the parallelism and
the efficiency of the engine, (b) when using different, complex, real-life queries from the maritime
and ATM domain, and (c) when queries with larger output size are used, which reflects the
scalability with query result size. For all queries the execution time was in the order of a few
seconds, thus matching the requirements set in deliverable D1.1.

As a final note, this report provides empirical evidence regarding the performance of the
integrated prototype, not only by means of the experimental results presented in this document,
but also by the published papers in well-established international conferences and workshops
(such as [2, 4, 6, 8, 9, 10, 12]) and journals of high impact (such as [3, 7]).
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A Example of Kafka Interceptors Usage

In this section, we provide a simple example for using Kafka Interceptors in the datAcron com-
ponents. As a showcase example, we present the Synopses Generator (SG) has been modified to
work with Kafka Interceptors.

A.1 Trajectory synopses usecase

In order to incorporate Kafka Interceptors into the trajectory synopses tool in a reusable way we
had to do the following:

1. Create a Gradle project containing the Kafka interceptors.

2. Port the trajectory synopses build tool from Maven to Gradle

3. Include the Kafka interceptors project into the Trajectory synopses tool

A.1.1 Create a Gradle project containing the Kafka interceptors

We have created a sample Gradle project containing the Kafka Interceptors to measure latency
for the various data types in datacron named DatacronKafkaUtils

A.1.2 Include the Kafka interceptors into the Trajectory synopses tool

The settings.gradle file

rootProject.name = ’trajectory_synopses_uprc’

include ":rdf_lib"
project(":rdf_lib").projectDir = file("../rdf_lib")

include ":DatacronKafkaUtils"
project(":DatacronKafkaUtils").projectDir = file("../DatacronKafkaUtils")

The build.gradle file

// Apply the scala plugin to add support for Scala
buildscript {

repositories {
jcenter()

}
dependencies {

classpath ’com.github.jengelman.gradle.plugins:shadow:2.0.2’
}

}

apply plugin: ’scala’
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apply plugin: ’java’
apply plugin: ’eclipse’
apply plugin: ’application’
apply plugin: ’com.github.johnrengelman.shadow’

allprojects {
ext {

javaVersion = ’1.8’
kafkaVersion = ’0.10.1.0-cp2’
kafkaVersion2 = ’0.8.2.0’
kafkaScalaVersion = ’2.11’
scalaVersion = kafkaScalaVersion + ’.7’
confluentVersion = ’3.1.1’
scalatestVersion = ’2.2.6’
avroVersion = ’1.8.2’
jettyVersion = ’9.2.12.v20150709’
jerseyVersion = ’2.19’
jedisClientVersion = "2.9.0"
flinkVersion = "0.10.2"
jacksonVersion = "2.4.4"
flinkKafkaVersion = "0.10.1"

}
// Apply the java plugin to add support for Java

// In this section you declare where to find the dependencies of your project
repositories {

// Use ’jcenter’ for resolving your dependencies.
// You can declare any Maven/Ivy/file repository here.

maven {
url "http://packages.confluent.io/maven/"

}

jcenter()
mavenCentral()
mavenLocal()

}
configurations.all {

resolutionStrategy {
// fail eagerly on version conflict (includes transitive dependencies)
// e.g. multiple different versions of the same dependency (group and name are equal)
//failOnVersionConflict()
force(’org.apache.kafka:kafka_2.11:0.8.2.0’)

}
}
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}

dependencies {
// Use Scala 2.11 in our library project

compile ’org.scala-lang:scala-library:2.11.7’
//compile ’org.apache.flink:flink-shaded-hadoop1’
//compile ’org.apache.flink:flink-shaded-hadoop2’
//compile ’org.apache.flink:flink-shaded-curator-recipes’
//compile ’org.apache.flink:flink-core:$flinkVersion’
//compile ’org.apache.flink:flink-java:$flinkVersion’
compile group: ’org.apache.flink’, name: ’flink-scala_2.11’, version: flinkVersion
compile group: ’org.apache.flink’, name: ’flink-runtime_2.11’, version: flinkVersion
compile group: ’org.apache.flink’, name: ’flink-optimizer_2.11’, version: flinkVersion
compile group: ’org.apache.flink’,name:’flink-clients_2.11’, version: flinkVersion
compile group:’org.apache.avro’, name: ’avro’ , version: avroVersion
compile group:’org.apache.flink’, name: ’flink-streaming-java_2.11’, version: flinkVersion
compile group:’org.apache.flink’, name: ’flink-streaming-scala_2.11’, version: flinkVersion
compile group: ’org.apache.flink’, name:’flink-connector-kafka_2.11’, version: flinkKafkaVersion
compile group: ’org.apache.kafka’, name: ’kafka_’ + kafkaScalaVersion , version: kafkaVersion2
compile group: ’org.apache.kafka’, name: ’kafka-clients’ , version: kafkaVersion2
compile project(":rdf_lib")
compile project(":DatacronKafkaUtils")

// Use Scalatest for testing our library

// Need scala-xml at test runtime

}

A.1.3 Instruct Flink to use the Kafka interceptors

In order for Flink ,or any other framework for that matter, to use the Kafka Interceptors we have
to insert the following into the Properties of the consumer and the producer respectively:

kafkaConsumerProperties
.setProperty(
ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG,

classOf[JSONConsumerInterceptor].getName)
val kafkaConsumer_Messages = new FlinkKafkaConsumer[String](

config.TOPIC_MESSAGES,
new SimpleStringSchema(),
// Read input messages as CSV strings; currently, NOT pertaining to
// the AVRO schema of critical points
kafkaConsumerProperties,
OffsetStore.FLINK_ZOOKEEPER,
FetcherType.LEGACY_LOW_LEVEL

)
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props.put(
org.apache.kafka.clients.producer.
ProducerConfig.INTERCEPTOR_CLASSES_CONFIG,
classOf[CriticalPointProducerInterceptor].getName)

val configNotifications = new kafka.producer.ProducerConfig(props)
val kafkaProducer_notifications = new Producer[String, String](configNotifications)
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B SPARQL Queries Used In Experiments

SPARQL Query 1 (Maritime Domain)
Prefix : <http://www.datacron-project.eu/datAcron#>
SELECT * WHERE {

?n :ofMovingObject ?ves ;
:hasHeading ?heading ;
:hasSpeed ?speed .

}

SPARQL Query 2 (Maritime Domain)
Prefix : <http://www.datacron-project.eu/datAcron#>
SELECT * WHERE {

?n :ofMovingObject ?ves ;
:hasHeading ?heading ;
:hasSpeed ?speed ;
:hasWeatherCondition ?w .

}

SPARQL Query 3 (Maritime Domain)
Prefix : <http://www.datacron-project.eu/datAcron#>
SELECT * WHERE {

?n :ofMovingObject ?ves ;
:hasHeading ?heading ;
:hasSpeed ?speed ;
:hasWeatherCondition ?w .
:StoppedInit :occurs ?n .

}

SPARQL Query 4 (Aviation Domain)
Prefix : <http://www.datacron-project.eu/datAcron#>
SELECT * WHERE {

?n :ofMovingObject ?aircraft ;
:hasHeading ?heading ;
:hasAirspeed ?speed .

}

SPARQL Query 5 (Aviation Domain)
Prefix : <http://www.datacron-project.eu/datAcron#>
SELECT * WHERE {

?n :ofMovingObject ?aircraft ;
:hasHeading ?heading ;
:hasAirspeed ?speed ;
:hasWeatherCondition ?w .

}

SPARQL Query 6 (Aviation Domain)
Prefix : <http://www.datacron-project.eu/datAcron#>
SELECT * WHERE {

?n :ofMovingObject ?aircraft ;
:hasHeading ?heading ;
:hasAirspeed ?speed ;
:hasWeatherCondition ?w .
?w :reportedMaxTemperature ?temp .

}
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