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EXECUTIVE SUMMARY

This report comprises the sixth deliverable (D1.6) of datAcron work package 1 �System archi-
tecture and data management� with main objective to describe the software design in datAcron,
in accordance with the requirements speci�ed in deliverable D1.1 and the architecture speci�ed
in deliverable D1.2. The task has two iterations. This is the result of the �rst iteration, which
focuses on fast prototyping and testing of the software architecture, aiming at providing valuable
experiences as well as software components towards the second iteration. The second design
iteration focuses on the integration with WP2-WP4.
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TERMS & ABBREVIATIONS

CSV Comma-separated values

ADS-B Automatic Dependent Surveillance-Broadcast

AIS Automatic Identi�cation System

RDF Resource Description Framework

TTL Terse RDF Triple Language
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1 Introduction

This document is the deliverable D1.6 �Software design (interim)� of Task T1.3 of work package
1 �System Architecture and Data Management� of the datAcron project. It de�nes the datAcron
software design with respect to the datAcron architecture and its software modules, focusing on
early prototyping and testing. This is the result of the �rst iteration of software design, aiming
at providing valuable experiences as well as software modules towards the second iteration. The
second design iteration focuses on the integration with WP2�WP4.

However, even at this �rst iteration, we provide an integrated prototype that implements
basic functionality and contains modules from work packages WP2�WP4, focusing mainly on
stream processing in real-time and online analytics, and leaving the part of o�ine analytics for
the period after M18.

1.1 Purpose and Scope

The �Software design (interim)� aims at developing a fast prototype which can demonstrate
the basic, integrated functionality of datAcron. In particular, the prototype that is developed
on M18 provides integrated functionality, by implementing interconnection between modules
developed as results of di�erent work packages. In more detail, the prototype o�ers the following
functionality on M18:

� Real-time consumption of raw surveillance data streams, on which the following operations
are performed: in-situ processing (including low-level event detection (WP1) and synopsis
generation(WP2)), semantic integration with weather and contextual data sources (WP1),
future location prediction (WP2), complex event detection and forecasting (WP3), and
real-time visualization (WP4).

� Querying integrated RDF data with a limited set of spatio-temporal queries, demonstrating
the feasibility of query processing (WP1).

Deliverable D1.6 is submitted on month M18 of the project, in order to show the feasibility
of realizing the datAcron scienti�c and technical objectives, by means of a fast prototype. Thus,
the deliverable reports on the modules that have been developed, as well as the Big Data tech-
nologies adopted for processing (Apache Flink and Apache Spark) and communication (Kafka).
Most importantly, this deliverable presents progress towards an integrated prototype, thereby
demonstrating that we have achieved the interconnection of the di�erent individual modules in
a coherent integrated platform. Extending, �ne-tuning, evaluating and further enhancing the
capabilities of this prototype in order to achieve the scienti�c and technical objectives of the
project is work planned for the remainder of the project.

1
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1.2 Approach for the Work package and Relation to other Deliverables

D1.6 is based on D1.2 �Architecture Speci�cation� delivered in M12, as it builds on and re�nes
D1.2 into a more concrete software architecture, taking also into account the features o�ered by
the technological solutions adopted. Speci�cally, D1.6 re�nes the datAcron architecture in a more
concrete software architecture and delivers an integrated software prototype as proof-of-concept,
which realizes critical �ows of information in datAcron on M18. Furthermore, D1.6 presents the
two main software layers: the real-time processing layer and the batch processing layer.

It should be pointed out that D1.6 is prepared during the same time that deliverables D1.3
�Cross-streaming data processing (interim)�, D1.4 �Data Integration, Management (interim)�,
D2.1 �'Cross-streaming, real-time detection of moving object trajectories (interim)', and D1.5
�Data storage and querying (interim)� are prepared. Deliverables D1.3, D1.4 and D2.1 provide
detailed description on real-time layer of the datAcron architecture. Also, D1.5 describes the
design of the batch processing solution developed in the context of datAcron. As such, they con-
nect to this deliverable, and intermediate versions of D1.3, D2.1 and D1.5 have been considered
during the preparation of the current deliverable.

1.3 Methodology and Structure of the Deliverable

In terms of work methodology, this deliverable takes as input D1.2 �Architecture Speci�cation�
and re�nes it in order to become a more concrete software architecture design, which is able to
combine the individual modules developed in datAcron. During the last six months, we have
been in close collaboration with partners in WP2, WP3, and WP4, that develop their solutions
and prototype implementations, in order to provide speci�c guidelines on the technology used
for inter-communication of modules, and for coordinating and orchestrating the development
activities. As a result, our adopted methodology resembles agile software development, since our
main focus was on early prototyping (for the �rst iteration) and continuous improvement and
response to changes (for the second iteration). Consequently, we are able to present the design
of an integrated prototype, and we refer to D1.7 �Integrated prototype (interim)� for this.

The remaining of this report is structured as follows:

� Section 2 overviews the datAcron architecture, as reported in D1.2, in terms of modules,
their interactions, as well as the general guidelines for developing a fast prototype. Also,
it explains how it connects to the Big Data Analysis pipeline, and presents the two main
layers: the real-time processing layer and the batch processing layer.

� Section 3 presents the software design of the integrated prototype of datAcron, focusing
on �ows of information and the architecture that encompasses all envisioned �ows and
modules. Moreover, it reports on the implementation status of the integrated prototype
and provides details on indicative, yet critical, implemented information �ows.

� Section 4 summarizes the work reported in this deliverable, and provides the plan for the
second iteration.

Finally, in the Appendix A, details are provided with respect to the datAcron cluster, the platform
where we deploy the datAcron prototype for testing and experimentation.

2
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2 The datAcron Integrated System Architecture

In this section, we brie�y recall the system architecture speci�ed in deliverable D1.2 of the
project on M12. First, we describe the major steps in Big Data Analysis (Section 2.1), and then
we present the overall datAcron architecture, its inputs, outputs, and modules (Section 2.2);
moreover, we connect the individual modules to steps of Big Data Analysis, thus positioning
them in this pipeline and illustrating their exact role. Finally, we describe the two constituent
layers of the datAcron architecture: the Batch Layer, which is responsible for distributed storage
and e�cient querying of integrated spatio-temporal RDF data (Section 2.3), and the Real-time
Layer, which involves all streaming operations and online analytics performed in real-time in the
stream of information available in datAcron (Section 2.4).

2.1 Major Steps in Big Data Analysis

The project datAcron aims at recognizing and forecasting complex events and trajectories from a
wealth of input data, both data-at-rest and data-in-motion, by applying appropriate techniques
for Big Data analysis. The technical challenges associated with Big Data analysis are manifold,
and perhaps better illustrated in [2, 3], where the Big Data Analysis Pipeline is presented.

Acquisition/ 
Recording

Extraction/ 
Cleaning/

Annotation

Integration/ 
Aggregation/ 

Representation

Analysis/ 
Modeling

Interpretation

Figure 1: Major steps in analysis of Big Data.

As depicted in Figure 1, �ve major phases (or steps) are identi�ed in the processing pipeline.
Below, we explain the datAcron related activities and research challenges related to each of these
phases, thus clearly showing how datAcron connects to the phases of the Big Data Analysis
pipeline:

1. Data Acquisition and Recording: Large volumes of data are created in a streaming
fashion, including surveillance data, weather forecasts, and other contextual data, and
need to be consumed in datAcron. One major challenge is to perform online �ltering of
this data, in order to keep only the necessary data that contain the useful information. To
this end, we apply data summarization techniques on surveillance data, thus keeping only
the �critical points� of a moving object's trajectory, which signify changes in the mobility
of the moving object. This compression technique achieves data reduction rate above 90%,
without compromising the quality of the compressed trajectories. In addition, in datAcron,
we have to deal with archival data sources (data-at-rest), which also need specialized data
connectors depending on the provided input format.

Another challenge in the data acquisition phase is to push computation to the edges of the
Big Data management system. We perform online data summarization of surveillance data

3
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on the input stream directly, as soon as it enters the system. Moreover, we employ in-situ
processing techniques, near to the streaming data sources, in order to identify low-level
events, such as monitoring the entrance/leave of moving objects in speci�c areas of interest
(such as protected marine areas).

2. Information Extraction and Cleaning: In datAcron, miscellaneous data in various
formats are provided to the system for processing and analysis. A basic prerequisite for
the subsequent analysis tasks is to extract the useful data and transform it in a form that
is suitable for processing. As a concrete example, weather forecasts are provided as large
binary �les (GRIB format), which cannot be e�ectively analyzed. Therefore, we extract
the useful meteorological variables from these �les together with their spatio-temporal
information, so that they can be later associated with mobility data.

In addition, surveillance data are typically noisy, contain errors, and are associated with
uncertainty. Data cleaning techniques are applied in the streams of surveillance data,
in order to reconstruct trajectories with minimum errors that will lead to more accurate
analysis results with higher probability. Indicative examples of challenges addressed in this
respect include handling delayed surveillance data, dealing with intentional erroneous data
(spoo�ng) or hardware/equipment errors. Also, with respect to data-at-rest, the involved
challenges also include cleaning and extracting useful information using an RDFization
approach.

3. Data Integration, Aggregation, and Representation: After having addressed data
cleaning, the next challenge is how to integrate the heterogeneous data coming from various
data sources, in order to provide a uni�ed and combined view. Our approach is to transform
and represent all input data in RDF, following a common schema (ontology) that is designed
purposefully to accommodate the di�erent data sources. However, data transformation
does not su�ce by itself. To achieve data integration, we apply online link discovery
techniques in order to interlink streaming data from di�erent sources, a task of major
signi�cance in datAcron.

By means of link discovery, we derive enriched data representations across di�erent data
sources, thereby providing richer information to the higher level analysis tasks in datAcron.
We refer to Deliverable D1.4 �Data Integration, Management (interim)� for details on the
various types of link discovery considered in datAcron.

4. Query Processing, Data Modeling, and Analysis: Another Big Data challenge ad-
dressed in datAcron relates to scalable processing of vast-sized RDF graphs that encompass
spatio-temporal information. Towards this goal, we design and develop a parallel spatio-
temporal RDF processing engine on top of Apache Spark. Individual challenges that need
to be solved in this context include RDF graph partitioning, implementing parallel query
operators that shall be used by the processing engine, and exploiting the capabilities of
Spark in the context of trajectory data. We refer to Deliverable D1.5 �Data storage and
querying (interim)� for more details on this.

Complex event detection is also performed in datAcron, where the objective is to detect
events related to the movement of objects in real-time. Last, but not least, particular
attention is set towards predictive analytics, namely trajectory prediction and event fore-
casting. Both short-term and long-term predictions are useful depending on the domain,
and in particular for maritime, a hard problem is to perform long-term prediction. We
distinguish between location prediction (where a moving object will be after X time units)
and trajectory prediction (what path will a moving object follow in order to reach position
X).

4
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5. Interpretation: To assist the task of human-based interpretation of analysis results, as
well as the detection of patterns that may further guide the detection of interesting events
� tasks that are fundamental for any Big Data analysis platform � datAcron relies on
visualizations and visual analytics. By means of those tools, it is possible to perform visual
and interactive exploration of moving objects and their trajectories, visualize aggregates
or data summaries, and ultimately identify trends or validate analysis results that would
be hard to �nd automatically.

Thus, the connection between the datAcron architecture and the Big Data Analysis pipeline, as
well as the activities related to the di�erent phases of Big Data analysis should be clear, based
on the above discussion.

2.2 Overview of the datAcron Architecture

2.2.1 Modules

At a high-level, the datAcron architecture is composed of the following six main modules (as
re�ected in the description provided in deliverable D1.2):

� In-situ Processing : This module is responsible for executing processing tasks, such as
detection of low-level events, on the premise of the actual streams.

� Synopses Generator : Its main role is to provide the algorithms for trajectory compres-
sion, by eliminating many positions of moving objects that do not signi�cantly a�ect the
quality of the representation.

� Data Manager : The data management module stores integrated data, produced by
integrating data-at-rest with data-in-motion, as well as analysis results from other modules,
and provides querying functionality on top of a uni�ed view of data, due to the data
integration. Persistent storage and querying of integrated data is provided by means of a
distributed RDF store, which is a module maintained by the Data Manager .

� Trajectory Detection and Prediction : This module performs trajectory prediction,
both in real-time and o�ine, as well as advanced data analytics related to moving objects.

� Event Recognition and Forecasting : This module is responsible for detection and
forecasting of complex events related to the mobility of objects.

� Visual Analytics: The exploratory data analytics module provides visualization facilities
as well as the opportunity to explore di�erent values for the parameters of the algorithms
and provide better models for the event detection and trajectory prediction modules.

Table 1 shows the mapping of datAcron modules to the di�erent steps of Big Data Analysis
pipeline.

2.2.2 Inputs

Inputs to the datAcron architecture consist of data-at-rest (archival data) and data-in-motion
(streaming data). Archival data are loaded in the Data Manager , and during this process they
are transformed, integrated, and stored as will be described in detail in the following paragraphs.

5
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datAcron module Step in Big Data Analysis

In-situ Processing Data Acquisition and Recording, Information Extraction and Cleaning

Synopses Generator Data Acquisition and Recording, Information Extraction and Cleaning

Data Manager Data Integration, Aggregation, and Representation, Query processing

Trajectory Detection and Prediction Data Analysis

Event Recognition and Forecasting Data Analysis

Visual Analytics Data Analysis, Interpretation

Table 1: The modules in the datAcron integrated prototype.

On the other hand, a distinction is made for streaming data, namely whether they are positional
data describing the spatio-temporal movement of objects (trajectories) or not. Trajectories are
treated as ��rst-class� citizens in datAcron, thus trajectory data is summarized (at Synopses
Generator) and associated with low-level events (during In-situ Processing). Also, they are
integrated in the Data Manager module, before storing, with existing (static) data, such as
ports, airports, information about the moving object (vessel/aircraft type, model, etc.). Other
streaming data, such as weather forecasts, �ight plans, regulations, etc., are directly fetched by
the Data Manager, in order to be integrated with the other available data.

2.2.3 Flows of Information

In the datAcron architecture, we have identi�ed di�erent �ows of information, which will be
explained in detail in Section 3. However, to make this section self-contained, we brie�y explain
how the input data is processed and made available to the di�erent datAcron modules.

The basic idea is that raw surveillance data is accessed as an incoming data stream in dat-
Acron. This stream is processed by di�erent datAcron modules that enrich it with extra infor-
mation, including low-level events, detection of �critical points� with annotations of kinematic
nature, weather-related information, as well as information and links to other data sources (e.g.,
contextual). In more detail, this stream contains cleansed data, after removing noisy raw data.
The remaining raw data positions are either tagged or not by datAcron modules. A tagged po-
sition means that it is one (or both) of the following: it is a critical point or it is associated with
a low-level event (e.g., enter an area of interest). Non-tagged positions are positions that do not
contribute any important information, therefore, they can be omitted from further processing (at
least, they do not deserve to be stored in the datAcron store). This single stream is available to
all data analytics modules in real-time, and it is also directed to the Data Manager for storage
and future batch processing.
The afore-described stream is available to all modules that perform data analytics in real-time,
namely Trajectory Detection and Prediction, Event Recognition and Forecasting and Visual An-
alytics, in order to provide the input necessary for the respective data analysis tasks. However,
the intermediate output stream of each module can be accessed by any other module too1. In
essence, this results in a loosely-coupled architecture, where higher level modules that perform

1In D1.2, we have de�ned these separate output streams of each module, and made clear that they are available

to all other modules. In this re�ned version of the software architecture described in the present deliverable, we

provide a single stream that contains all information and can be accessed by any module. This is achieved by

having each module taking as input the Kafka topic which is output by the previous module, following a �chained�

approach. This approach solves several technical issues and allows fast prototyping, which is the objective of this

deliverable.

6
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data analytics can consume the output of other modules that perform data extraction or in-
tegration, in order to optimize their operation in real-time. Also, data analytics modules may
also interact with each other; for instance, the Visual Analytics module visualizes the events
detected or predicted by the Event Recognition and Forecasting module in order to perform vi-
sual analytics, and the Event Recognition and Forecasting module takes as input the trajectories
detected or predicted by Trajectory Detection and Prediction to identify complex events related
to trajectories.

2.2.4 Outputs

When considering outputs of the datAcron architecture to the end-user, these consist of detected
and forecast events, data analytics results (detected and predicted trajectories and events, ex-
ploratory visual analytics, etc.) initiated by a user that performs a speci�c task, and results to
queries over the integrated data provided by the Data Manager .

2.2.5 Key Issues and Bene�ts

The key issues for the datAcron architecture are as follows:

� The data synopses computed near to the sources aim to largely reduce at a high compression
rate the streaming data that the data management and analytics layers have to manage.
However, access to the raw streaming data is still an option for the analytics modules, in
case a module requires this explicitly.

� The data synopses computed from multiple streams can already be integrated at the lower
processing modules (near to the sources). Data synopses and archival data are transformed
into a common form according to the dataAcron RDFS schema, are integrated (where
necessary) and are pipelined to the rest of the analytics modules directly, in real-time.
This alleviates the need for analytics modules to access the datAcron store frequently.

� �Raw� streaming data are not stored as they enter the system: Persistent storage concerns
data synopses, semantically annotated and integrated to archival data, trajectories and
events detected. The datAcron store will provide advanced query answering services for
other system modules and human or software clients to access these data, according to
their requirements on integrated data views.

The above architecture has certain bene�ts:

� All data from streaming and archival data sources, as well as trajectories and events com-
puted by analytics modules can be semantically integrated by discovering links between
respective instances, providing semantically-rich coherent views of data. Doing so, dat-
Acron seamlessly annotates trajectories and events with semantic information, and it links
these among themselves as well as with the rest of archival and cross-streaming data.

� All analytics modules can take full bene�t of the computations of others, also taking advan-
tage of interlinking between their results. Thus, the trajectory detection and forecasting
methods can bene�t from events detected or forecast and vise-versa. Similarly for the
visual analytics methods.

� Users can interact and explore data via integrated data views, being supported for decision-
making.

7
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Figure 2: Batch processing.

2.3 Design of Batch Layer

Batch processing (Figure 2) refers to the Data Manager module, which provides access to in-
tegrated data, both historical and fresh data. However, there is an unavoidable gap between
real-time data and fresh data, due to sheer volume of data handled by the Data Manager and
the induced latency for integrating the streaming data with the historical data. As such, it is
expected that Data Manager provides access to data up to a certain time point in the near past,
whereas the most recent data is handled in a streaming fashion. Eventually, this streaming data
will update the data stored in Data Manager .

On top of the Data Manager module, other datAcron modules operate and perform long-
running analysis tasks. For example: the Trajectory Detection and Prediction module performs
processing-intensive analytics tasks o�ine, such as clustering, classi�cation, or others; the Event
Recognition and Forecasting module analyzes historical data to identify patterns of events; the
Visual Analytics module retrieves data in order to facilitate interactive analysis, data exploration
and visualization tasks. All afore-described analysis tasks translate to batch processing over
subsets of the historical data available in datAcron, and do not necessarily require the most
recent data that arrived in the system.

At the time of this writing, the state-of-the-art solution for batch processing is Apache
Spark [10, 11]. This framework is adopted in datAcron in order to develop the batch processing
functionality. In the following, it is described how Spark is extended, in order to accommodate
the needs and peculiarities associated with processing and analyzing trajectory data represented
in RDF. For more details, we refer to Deliverable D1.5 �Data storage and querying (interim)�
which describes the batch layer in detail, and is also submitted at the same time with this
deliverable (on M18).

8
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2.4 Design of Real-time Layer

In this section, we report the general guidelines with respect to the design of a datAcron module
operating in real-time (stream processing) in order to be easily plugged in the software architec-
ture.

In terms of software design, the main directive followed in the datAcron real-time layer is
that every real-time module must interact with other real-time modules in the architecture using
Kafka. This approach has some advantages:

� it allows modular design of the individual modules;

� it does not demand a common implementation framework or programming language;

� it makes integration easy, since the architecture is loosely-coupled, in contrast to tight
coupling that would impose the use of speci�c APIs;

� it enables the use of di�erent serialization techniques by di�erent modules when producing
output (for some tasks binary formats may be more suitable, e.g., Avro, Parquet, while in
other cases text in the form of JSON might be a better option).

As described in Deliverable D1.2 �Architecture Speci�cation� and analyzed also below, the
real-time layer in datAcron (also illustrated in Figure 3 with respect to architectural modules)
requires two main functionalities: (a) stream processing, and (b) stream-based communication.

Data
Integrator

Event 
Forecasting

Trajectory 
Prediction

Visual 
Analytics

Input 
streams

In-situ 
Processing

Synopses 
Generator

Real-time Processing

Predicted 
trajectories

Forecast 
events

Visual 
patterns

Figure 3: Real-time processing.

2.4.1 Stream Processing

Multiple operations in datAcron are performed on streaming data: the generation of trajectory
synopses, data integration, event detection (low-level events and complex events), trajectory
prediction, event forecasting, and interactive visual analytics. The majority of these operations
must be performed in near real-time, respecting the requirements for operational latency.

Taking into account the requirements for stream processing of the datAcron modules as
well as initial experimental tests, Apache Flink is going to be used primarily for implementing
stream processing functionality. We refer to Deliverable D1.3 �Cross-streaming data processing
(interim)�, which reports experimental results from a comparison between stream processing
frameworks that support the choice of Flink. However, this does not exclude the usage of other
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stream processing frameworks (e.g., Kafka streams) for speci�c modules of datAcron, if such a
need arises.

2.4.2 Stream-based Communication

To support di�erent stream-based functionality, modules in datAcron need an interconnection
infrastructure, since typically the operation of one module may rely on the output of another
module. In order to support �exible interconnection and communication between modules with-
out imposing a rigid architecture, we opt for a loosely-coupled architecture for datAcron, which
has the additional advantage that di�erent modules can be developed using di�erent technologies.

In particular, all outputs of modules are streamed out, thus allowing any other module to con-
nect to any output stream(s) and have access to its content. In technical terms, datAcron adopts
the use of Apache Kafka as messaging system to implement the interconnection infrastructure
necessary to support our loosely-coupled architecture.
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3 The datAcron Integrated Prototype

The purpose of this section is to re�ne the integrated software architecture of datAcron and
clarify the details of each module / �ow as of M18. Therefore, in Section 3.1, we present details
of participating modules, and, in Section 3.2, we discuss the respective �ows materialized by
these modules. In Section 3.3, we present the implementation status as of M18, essentially
reporting of the fast prototype to be delivered and demonstrated. Section 3.4 summarizes the
results presented regarding the datAcron prototype.

3.1 datAcron Modules

The envisaged datAcron architecture consists of the following modules listed in Table 2.

Module Nr. Module acronym Module Title Task in Work

Charge package

1) Maritime Maritime raw data feeder T5.2 WP5

2) Aviation Aviation raw data feeders T6.2 WP6

3) LED In-situ processing 1 � Low-level event detector T1.3.1 WP1

4) SG In-situ processing 2 � Synopses generator T2.1 WP2

5) SI Semantic integrator T1.3.2 WP1

6) DM Data manager T1.3.3 WP1

7) T/FLP Trajectory / Future location predictor T2.2 WP2

8) TDA Trajectory data analytics T2.3 WP2

9) CER/F Complex event recognition / forecasting (CER/F) T3.1-2-3 WP3

10) IVA Interactive visual analytics T4.3 WP4

11) Viz Real-time visualization T4.4 WP4

Table 2: The modules in the datAcron integrated prototype.

A short description as well as the implementation status (as of M18) of each module follows.

� Maritime raw data feeder (Maritime): The data feed is a decimated stream that
comes from a range of terrestrial AIS receivers and 18 satellites in a low earth orbit. The
maritime AIS data stream is collected, tested for veracity using a streaming analytics
module and then �ltered to provide the data required for the datAcron project. The AIS
data stream is then converted, in real time, from an IEC 61162-1 data stream to a JSON
format data stream to allow it to be ingested into the remainder of the datAcron system.

� Aviation raw data feeder (Aviation): This module comprises of a set of 6 European
Surveillance data feeds. Namely:
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1. FlightAware real time surveillance feed: This module sends a stream of real time
surveillance from �ightaware global live feed data in plain text to the stdout so it can
be piped to any consumer. Only one connection is allowed for datAcron project.

2. FlightAware replay surveillance feed, online mode: This module sends a stream of
data for a given period in the past. It requires internet connection and uses �ight
aware services. The data streamed starts at the beginning of the period and last till
all messages are delivered to the end of the period (a few days are maximum period
span allowed).

3. FlightAware replay surveillance feed, o�ine mode: This module sends a stream of
data reading a local json �le previously stored from the real time surveillance feed. It
does NOT require internet.

4. ADSBExhcange real time surveillance feed: This module sends a stream of real time
surveillance from ADSBExchange global live feed data in plain text to the stdout so
it can be piped to any consumer.

5. ADSBExhcange replay surveillance feed, o�ine mode: This module sends a stream of
data reading a local �le previously stored from the real time ADSBExchange surveil-
lance feed. It does NOT require internet.

6. ADSBHub replay surveillance feed, o�ine mode: This module sends a stream of data
reading a local �le previously stored from the real time ADSBHub surveillance feed.
It does NOT require internet.

� In-situ processing 1 � Low-level event detector (LED): In-situ processing in general
refers to the ability to process data streams in-situ � as close to the source where the data
originates. This is in particular challenging, when the stream processing of the data requires
additional input from other sources, either other instances of the stream or from global
system settings or user interaction. As a proof of achieving the architectural integration
of in-situ processing, datAcron will apply the event forecasting techniques in-situ on single
streams, providing an enriched event stream for visualization in real-time. Based on this,
event forecasting will be extended towards distributed online learning, making it possible
to learn forecasting models cross-stream from other moving objects.

� In-situ processing 2 - Synopses Generator (SG): The Synopses Generator consumes
streaming positions of raw surveillance data and eliminates any inherent noise such as
delayed or duplicate messages. Moreover, it identi�es critical points along each trajectory,
such as stop, turn, or speed change, in order to provide an approximate, lightweight synopsis
per moving object.

� Semantic integrator (SI): Its functionality is to (a) transform data from all sources to
RDF and (b) discover links between di�erent sources, output this as a stream and also
send for storage.

� Data manager (DM): Its functionality is to store information into a distributed spatio-
temporal RDF store and provide query answering facility.

� Trajectory / Future location predictor (T/FLP): FLP calculates motion functions by
harvesting the cleansed KAFKA stream (from the Synopses Generator module) consisting
of the most recent locations from a moving object to predict its short-term future location
in real time by taking into consideration the tendency of the movement. Each predicted
point will be streamed out in real time to other modules. Regarding TP, it will present a
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similar functionality targeting at predicting the future trajectory of a moving object as far
in time horizon an possible.

� Trajectory data analytics (TDA): The goal of this module is twofold: on the one
hand it provides advanced analytics that are going to serve specialized requirements in the
datAcron architecture (e.g. data-driven discovery of the networks/routes upon which the
movement of the vessels/aircrafts take place), while on the other hand it provides global
patterns that represent meta models devised from the local patterns (e.g. clusters and
sequential patterns of semantic trajectories).

� Complex event recognition/forecasting (CER/F): CER is about real-time detection
of complex events, whereas CEF is about real-time forecasting of complex events. Both
modules are working on the synopsis of the moving object generated by the two in-situ
processing modules (LED & SG) and, in addition, can take additional information achieved
via the enrichment and linking performed by SI. The output of CER is a real-time stream
with detected events. On the other hand, CEF enriches the input stream with a forecast
about the probability of each monitored pattern. As event forecasting requires learning of
CER probabilities, it is more restrictive with respect to the potentially supported patterns
than the pure event detection.

� Interactive visual analytics (IVA): The IVA module builds on top of the real-time
visualization module to provide limited analytical capacity on streaming data. The pri-
mary use is to allow analysts, and possibly advanced operators, to �ne-tune and observe
impact of parameter adjustments to the T/FLP and CER/F modules compared to actual
data in (near) real-time. It therefore complements the situation monitoring capabilities of
the real-time visualization used by ordinary operators on the one hand (by providing pa-
rameter settings to the detection modules), and the full-�edged VA suite used for in-depth
exploration and analysis in o�ine (strategic latency) settings.

� Real-time visualization (Viz): This module provides a map-based visualization of the
stream of enriched spatio-temporal events generated by the T/FLP and CER/F modules.
It is able to display di�erent event types (e.g., critical points) simultaneously with indi-
vidual visual encoding for each type. In addition events associated with the same moving
object identi�er are automatically integrated into trajectory representations so operators
can observe movement patterns. The overall design follows the �overview-�rst, zoom-and-
�lter, details-on-demand� approach, meaning that operators can de�ne �lters on the input
stream to drill down on areas and event types of interest.

3.2 datAcron Flows

Having the modules presented above integrated, a number of information �ows of three di�erent
types are envisaged. In particular:

� Information management �ows are about the reconstruction of trajectories and their en-
richment with useful annotation, which is to be performed online (operational latency),
and their storage for querying purposes, which is to be performed o�ine (tactical latency).

� Online analytics �ows are about consuming the available streaming information, which is
to be performed online (operational latency); and
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� O�ine analytics �ows are about consuming the available stored information, which is to
be performed o�ine (strategic latency).

Note that there exist three main consumers (namely, T/FLP, CER/F, and IVA), therefore,
3+3 �ows are envisaged, for the online and o�ine analytics, respectively. Table 3 presents the
list of �ows (along with the respective latency type and partners in charge of coordinating their
implementation).

Flow Nr. Flow Title Latency

Information management �ows

1) Trajectory reconstruction and semantic enrichment Operational

2) RDF storage Tactical

Online analytics �ows

3) Trajectory/FL prediction online Operational

4) Complex event recognition / forecasting online Operational

5) Visual Analytics online Tactical

O�ine analytics �ows

6) Trajectory data analytics o�ine (*) Strategic

7) Complex event recognition / forecasting o�ine (*) Strategic

8) Visual Analytics o�ine Strategic

Table 3: The datAcron �ows of information (note: �ows marked with * are not planned to be
implemented until M18).

The functionality of each �ow is discussed in the following sections. In accordance with the
�ows, Figure 4 illustrates the datAcron architecture, which is a re�ned version of the architecture
speci�ed in Deliverable D1.2 �Architecture Speci�cation�.

3.2.1 Flow #1: Trajectory reconstruction & semantic enrichment (operational la-
tency)

� Short description: Maritime / Aviation raw data stream is (1a) cleansed, enriched with
derived information (e.g. speed) as well as low-level events (e.g. intersection with zones of
interest), synopsized by tagging �critical points� (change of heading or altitude, etc.), and
(1b) further enriched with info from other external data sources / streams (weather info,
etc.); the �nal output (1c) is streamed out to be consumed by other modules, including its
visualization (1d).

� Modules involved: Maritime / Aviation; LED; SG; SI; Viz.

3.2.2 Flow #2: RDF storage (tactical latency)

� Short description: A subset of the enhanced surveillance data stream, i.e. the annotated
surveillance data, as well as selected output streamed out by other modules is (2a) processed
and (2b) stored in the RDF store.

� Modules involved: DM.
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Figure 4: The re�ned datAcron architecture.

3.2.3 Flow #3: Trajectory/FL prediction online (operational latency)

� Short description: T/FLP (3a) consumes the enhanced surveillance data stream (as well as
other streams, if needed) for the purposes of online trajectory / future location prediction
and (3b) streams out its output to be consumed by other modules, including its visualization
(3c).

� Modules involved: T/FLP; Viz.

3.2.4 Flow #4: Complex event recognition / forecasting online (operational la-
tency)

� Short description: CER/F (4a) consumes the enhanced surveillance data stream (as well
as other streams, if needed) for the purposes of online event recognition / forecasting and
(4b) streams out its output to be consumed by other modules, including its visualization
(4c).
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� Modules involved: CER/F; Viz.

3.2.5 Flow #5: Interactive visual analytics online (operational latency)

� Short description: IVA consumes the enhanced surveillance data streams (3c, 4c), streamed
meta data on the T/FLP and CER/F modules (current parameter settings, 5a), and, if
needed, base data for comparison (1d) for the purposes of online VA; and (5b) streams out
its output (updated parameter settings, areas-of-interest) in KVP format to be consumed
by other modules.

� Modules involved: IVA; T/FLP; CER/F.

3.2.6 Flow #6: Trajectory data analytics o�ine (strategic latency)

� Short description: TDA (6a) queries the RDF store in order for complex patterns to be
discovered and (6b) stores selected results back to the RDF store for future use.

� Modules involved: TDA; DM.

3.2.7 Flow #7: Complex event recognition / forecasting o�ine (strategic latency)

� Short description: CER/F (7a) queries the RDF store in order for complex events to be
detected/forecasted and (7b) stores selected results back to the RDF store for future use.

� Modules involved: CER/F; DM.

3.2.8 Flow #8: Interactive visual analytics o�ine (strategic latency)

� Short description: IVA (8a) queries the RDF store in order for large batches of raw data for
complex o�ine analysis and (8b) stores selected results (derived attributes, spatio-temporal
patterns, clustering results, parameter settings) back to the RDF store for future use.

� Modules involved: IVA; DM.

3.3 Implementation Status

At the time this deliverable is submitted, we are �nalizing the integration of the �rst �ve �ows
(1�5). In this way, we are able to demonstrate the fast prototyping, by providing an integrated
prototype where all technical workpackages interact and provide a common functionality.

Figure 5 shows in more technical detail the information �ows 1 and 2, which is are two of the
most critical information �ows in datAcron, as they provide enriched surveillance data for further
online analytics tasks (�ow 1), and generate integrated data for storage and o�ine analysis (�ow
2).

3.3.1 Flow #1

In this �ow, the prototype consumes as input raw surveillance data, both for maritime and
aviation surveillance sources. This input is provided as a Kafka stream. In-situ processing
modules operate on this stream.
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Figure 5: Flows #1 and #2 in the implemented prototype.

� LED aims to provide a Flink component that processes a stream of raw messages (i.e., AIS
dynamic messages) and enrich it with derived attributes such as min/max, average and
variance of original �elds. As such, LED accesses the raw stream containing positions of
moving objects (vessels or aircrafts) and identi�es low-level events, such as entry/exit to
areas of interest. In addition, a stream simulator for the raw messages is developed in the
context of this module, which provides a functionality to replay the original stream of raw
messages by generating a simulated new Kafka Stream and taking into account the time
delay between two consecutive messages of a trajectory, furthermore, this delay can be
scaled in/out by a con�guration parameter. In more detail, LED computes the following
attributes on per trajectory basis:

� Min/Max, average and median of speed

� Min/Max, average and median of acceleration

� Min/Max, median of time di�erence between successive points

� Min/Max duration, dates and coordinates

The output is provided as a Kafka stream that contains the original information as well as
the afore-described �elds. For the maritime use-case, the output line header is:

id,status,turn,speed,course,heading,longitude,latitude,timestamp,

AverageDiffTime,NumberOfPoints,LastDiffTime,MinSpeed,MinDiffTime,

MaxSpeed,MaxDiffTime, MinLong,MaxLong,MinLat,MaxLat,LastDifftime,

AverageSpeed,VarianceSpeed

Table 4 explains the output description; the same order of attributes is used as in AIS
messages of NARI source with additional attributes computed by this module. The detailed
description of the operation of LED is provided as a separate deliverable D1.3 �Cross-
streaming data processing (interim)� on M18.

� SG accesses the output of LED and performs two major operations. First, it performs
data cleansing, thus eliminating noisy data. Second, it identi�es �critical points� on per
trajectory basis. Essentially, SG tags the most signi�cant positions that contain informa-
tion that can accurately described the trajectory with information describing each critical
points (e.g., �turn�, �gap_start�, �gap_end�, etc.). The output is provided in Avro2 format

2https://avro.apache.org/

17

https://avro.apache.org/


D1.6 Software design (interim) H2020-ICT-2015 14/7/17

Attribute Data type Description

id integer A globally unique identi�er for the moving object (usually, the MMSI of vessels).

status integer Navigational status

turn double Rate of turn, right or left, 0 to 720 degrees per minute

speed double Speed over ground in knotsint (allowed values: 0-102.2 knots)

course double Course over ground (allowed values: 0-359.9 degrees)

heading integer True heading in degrees (0-359), relative to true north

longitude double Longitude (georeference: WGS 1984)

latitude double Latitude (georeference: WGS 1984)

timestamp long timestamp in UNIX epochs (i.e., milliseconds elapsed since 1970-01-01 00:00:00.000)

AverageDi�Time long The average of di�erence time between the positions message of a trajectory

NumberOfPoints int The accumulated number of the received points

LastDi�Time double The time di�erence of the current message and the last previous received message

MinSpeed double The minimum value of speed until current message

MinDi�Time long The minimum value of time di�erence until current message

MaxSpeed double The maximum value of speed until current message

MaxDi�Time double The maximum value of time di�erence until current message

MinLong double The minimum value of longitude until current message

MaxLong double The maximum value of longitude until current message

MinLat double The minimum value of latitude until current message

MaxLat double The maximum value of latitude until current message

AverageSpeed double The average of the speed

VarianceSpeed double The variance of speed

Table 4: LED output description.

as a Kafka stream. The detailed description of the operation of SG is provided as a sep-
arate deliverable D2.1 �Cross-streaming, real-time detection of moving object trajectories
(interim)� on M18.

� SI receives the Kafka stream produced by SG and performs transformation to RDF as well
as data integration, by enriching positions with information about weather as well as other
contextual information. The output is provided in RDF, encoded in Terse RDF Triple
Language (TTL)3 and serialized in binary format as Java objects, also provided as a Kafka
stream. The detailed description of the operation of SI is provided as a separate deliverable
D1.4 �Data Integration, Management (interim)� on M18.

� Viz receives this enriched stream of information and provides real-time visualizations that
can be used by operational users for improved situational monitoring and awareness.

3.3.2 Flow #2

This �ow is a continuation of Flow #1, namely it receives the RDF data provided in a Kafka
stream and stores it in the distributed RDF store. For this purpose, the RDF data is encoded
using a spatio-temporal RDF encoding scheme introduced in datAcron that enables e�cient
storage and retrieval of spatio-temporal RDF data. In addition, we provide querying facilities
on top of the distributed RDF store. We have developed batch processing functionality using
Apache Spark and extending it towards querying spatio-temporal RDF data. In this way, we can
retrieve portions of the integrated data based on di�erent �ltering criteria, and the produced data
sets can be used for more advanced analysis tasks (e.g., trajectory clustering, pattern discovery,
building forecasting models, etc.).

In M18, we have implemented a small set of queries on maritime data to demonstrate this
functionality, and we shall extend this set in the subsequent months to provide richer functional-
ity. The detailed description of the operation of the DM module which contains the distributed

3https://www.w3.org/TR/turtle/

18

https://www.w3.org/TR/turtle/


D1.6 Software design (interim) H2020-ICT-2015 14/7/17

RDF store is provided as a separate deliverable D1.5 �Data storage and querying (interim)� on
M18.

3.3.3 Flow #3

This �ow addresses the trajectory and future location prediction in an online fashion.

Sub-�ow #3a The sub-�ow #3a in the datAcron architectural diagram is actually the input
for module T/FLP. Normally, this involves data from full-resolution data, synopses and semantics
integrated into the corresponding sub-�ows #1x and then published in the �enhanced surveillance
data stream� (shared).

The current implementation of algorithms in module T/FLP rely on streaming simulation
mode, typically in various packets of customized CSV �les. This is a shortcut, until the full
integration is completed and the corresponding modules are available online as input feeders (see
Flow #1).

In full integration mode, this combined information may also be available by combining the
intermediate outputs of the modules in Flow #1, e.g. by module SI (typically a Kafka stream
with composite RDF records).

There is also extended logging in module SG, which may be useful for some future location
prediction algorithms in module T/FLP, especially the exact processing and labeling of critical
points (e.g. turns / �change of heading�). Some of these are already been used now in designing
and optimizing the current implementations in T/FLP. However, no speci�c requirement or spec-
i�cation is proposed for now, regarding possible inclusion in sub-�ow #3a, until these algorithms
are �nalized and in fully operational mode.

As of M18, T/FLP operates on the following set of attributes, in order to perform its task:

� id

� ts (timestamp)

� longitude

� latitude

� altitude

� annotation

� speed

� heading

Sub-�ows #3b/#3c The sub-�ows #3b/#3c in the datAcron architectural diagram are ac-
tually the outputs from module T/FLP. Normally, this includes forecasts of variables from T/FL
predictors and they are published in the �enhanced surveillance data stream� (shared).

In the current implementation, the prediction results from T/FLP are stored as JSON Arrays
in HDFS, in order to evaluate the proposed algorithm, enrich synopses results (�ll communication
gaps) and give extended input in clustering or statistical procedures. In next steps we are going
to store the prediction results in byte array format (Serialize Arvo Schema with Avro Tools and
produce byte array) for more e�cient storage and retrieval, in order to be used by algorithms in
the TDA module (see: Sub-�ow #6b).
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According to the current implementations in module T/FLP, there is a proposed schema
that can be used as template for the �nal integration with modules VA, SI and the shared data
stream. The stream speci�cation is Kafka in JSON format and its current design is as follows
(to be revised):

Sub-flows #3b,#3c: Kafka/ Avro record (provisional)

"name": "PredictionArray",

"type":"record",

"fields":[

{

"name" : "point" , "type" : {

"type": "array",

"items":{

"name":"RMFPoint",

"type":"record",

"fields":[

{"name":"id", "type":"long"},

{"name":"timestamp", "type":"long"},

{"name":"longitude", "type":"double"},

{"name":"latitude", "type":"double"},

{"name":"altitude", "type":"double"},

{"name":"speed", "type":"double"},

{"name":"heading", "type":"double"}

]

}

}

},

{"name": "prediction", "type": "boolean"}

]

3.3.4 Flow #4

As of M18, the modules Complex Event Recognition (CER) and Complex Event Forecasting
(CEF) are deployed and operate on the maritime AIS data from the Brest area. The Complex
Event Recognition has also been tested and operates on aviation data. Both modules consume
the data provided by the SG module and either read in the data from �le or from a Kafka topic.
Outputs are produced as streams on Kafka.

For simulating real-time data as being received from the external world, a �Synopses Stream
Simulator� has been developed that does the following:

� ingest the synopses CSV data from Kafka stream or by CSV �le source reader,

� process the synopses to reconstruct the trajectories and simulate the original stream by
delaying the propagation the synopses based on the time di�erence between the synopses
of a trajectory (time delay can be scaled in/out by a given parameter),

� then, the synopses are published to Kafka Stream in JSON format as shown in the following
example:

{
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"timestamp": 1451606409000,

"id": "227006770",

"longitude": 0.133466666666667,

"latitude": 49.4754,

"annotation": {

"stop_start": false,

"stop_end": false,

"change_in_speed_start": false,

"change_in_speed_end": false,

"slow_motion_start": false,

"slow_motion_end": false,

"gap_start": false,

"gap_end": true,

"change_in_heading": false,

"noise": false

},

"distance": 0,

"speed": 0,

"heading": 0,

"time_elapsed": 0,

"msg_error_flag": ""

}

For testing integration with the real-time visualization (Viz), Viz is reading in this Kafka
stream and plotting the trajectory in simulated real-time. In addition, Viz is receiving events
streams with forecasts.

Complex Event Forecasting This module currently processes the synopses stream of vessels
and attaches predications of prede�ned patterns (i.e., de�ned by regex) as illustrated in the
following JSON output line of a synopsis after adding the predictionsMap by this module, where
is the predictions list for each pattern is expressed as [current relative timestamp, start time of
completion interval, end time of completion interval, probability of the pattern] :

{

"timestamp":1451606409000,

"id":"244710897",

"longitude":4.42071333333333,

"latitude":51.8845133333333,

"annotation":{

"stop_start":false,

"stop_end":false,

"change_in_speed_start":false,

"change_in_speed_end":false,

"slow_motion_start":false,

"slow_motion_end":false,

"gap_start":false,

"gap_end":true,

"change_in_heading":false,

"noise":false

},
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"distance":0.0,

"speed":0.0,

"heading":0.0,

"time_elapsed":0,

"msg_error_flag":"",

"predictionsMap":{

"change_in_heading.gap_start.gap_end.change_in_heading":[

2.0,

13.0,

17.0,

0.65

],

"change_in_heading.gap_start.(gap_end|change_in_heading)":[

2.0,

9.0,

14.0,

0.70

]

}

}

The forecasting module is implemented in Flink with Java 8, reading from Kafka, sending to
Kafka and is currently tested to forecast a patterns.

Complex Event Recognition Regarding event recognition, several patterns have been im-
plemented and tested. For the maritime use case:

� MSI#08: Speed not compatible with area

� MSI#19: Under way (using engine or sailing)

� MSI#26: Loitering

� MSI#28: Rendez-vous

For the �ight planning use case:

� top-Of-Climb

� top-Of-Descent

� deviation from �ight plan

3.3.5 Flow #5

This �ow is about interactive visual analytics online. Although SG and TFL/P are not explicitly
associated with Flow #5, they are included here for completeness, as they are actually what feeds
into a �stream combinator�, which fuses streams #1d, #3c and #4c into the single enhanced
surveillance data stream that (for the current implementation) serves as the only input to the
visualization module Viz.

Viz digests this enriched stream of spatial events that are further and automatically integrated
into trajectory objects, displayed jointly as points and lines, respectively, on a (2D) map display.
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It should be noted that from the perspective of the visualization, actual position reports
(ground truth/historic data, stream #1d), predicted events (#4c), and trajectory synopsis (#3c)
are all comprised of (a set of) spatial events. The only di�erence is what additional event
attributes are available for visual mapping � e.g., for the semantic type label for synopsis/critical
points, or a �ag indicating whether this is an actual, observed datum or a predicted position. The
principal format of the input stream, including the thematic event attributes and �ags currently
supported, has been described in detail in Flow 4 above.

The IVA module builds on top of Viz to provide limited analytical capacity on streaming
data. Therefore, the principal input to the IVA is identical to that of the Viz � streams #1d,
#3c, #4c. The primary use is to allow analysts, and possibly advanced operators, to �ne-tune
and observe impact of parameter adjustments. This adds �ows #5a and #5b to the picture,
which represent the input to and output from, respectively, the IVA module to the T/FLP and
SG modules.

Sub-�ow #5a The role of sub-�ow #5a in the datAcron architectural diagram will be to
communicate current parameter settings from the computational modules T/FLP and SG to the
IVA module.

We have preliminarily identi�ed the following information that could be meaningfully com-
municated between them, in addition to any semantic information already encoded and commu-
nicated through event streams #3c and #4c:

1. Current values of named free parameters of speci�c detection/prediction algorithms, e.g.,
the minimum CPA distance threshold for MSI#28 (rendez-vous), for UI display purposes

2. Locations (points) or areas (polygons) of interest, such as protected areas (MSI#02), ref-
erence locations (MSI#01, MSI#03), aeronautical waypoints, or ATC sectors, to display
this context information on the map display

3. Sets (arrays) of historic attribute values (e.g., vessel speeds) with a de�ned �window length�
(start and end time stamps relative to current real time), to populate �detail on demand�
information overlays for selected entities during real-time analysis.

4. Other control commands a�ecting the computational modules, such as a �reset� command
for the in-situ processing module to trigger a corresponding reset of statistical aggregates
collected over the stream up to the given moment.

In terms of actual online integration, the networked connection between modules Viz, SG,
and T/FLP would utilize the same Kafka with JSON-encoded payload as has already been tested
successfully.

Sub-flow #5a: Kafka/Avro record (provisional)

"name": "HistoricDataArray",

"type":"record",

"fields":[

{

"name" : "point" , "type" : {

"type": "array",

"items":{

"name":"RMFPoint",

"type":"record",
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"fields":[

{"name":"id", "type":"long"},

{"name":"timestamp", "type":"long"},

{"name":"longitude", "type":"double"},

{"name":"latitude", "type":"double"},

{"name":"altitude", "type":"double"},

{"name":"speed", "type":"double"},

{"name":"heading", "type":"double"}

]

}

}

},

{"name": "windowstart", "type": "long"},

{"name": "windowend", "type": "long"},

{"name": "historic", "type": "boolean"}

]

Note the proposed format replays all information that uniquely identi�es any spatial event
(id, timestamp, geographic coordinates), in addition to any requested attributes. This allows to
register detail overlay with recent data that is retained on the map display.

Sub-�ow #5b The role of sub-�ow #5b in the datAcron architectural diagram is to commu-
nicate updated parameter settings from the IVA module to the computational modules T/FLP
and SG. Data format and technical realization would be equivalent to those described above for
sub-�ow #5a, with the exception that only stream content (a) and (b) � i.e., user-adjusted free
parameter settings, user-de�ned points or areas of interest � are meaningful.

Implementation Details of Flow #5 The implementation of the real-time visualization/interactive
VA module follows the client-server architecture (see D4.4.1, Section 3). On the server side the
Kafka streams are consumed. All the applications on the server side are written in Java. The
client side is browser-based and written in JavaScript.

In the current version of the implementation, neither stream #5a nor stream #5b are sup-
ported with the exception of a proof-of-concept implementation of a �reset� command that
restarts the aggregate collected over the full event stream as observed by the in-situ module;
further extensions of the real-time visualization module into the IVA module, including UI ad-
ditions to display and set, respectively, the contents of streams #5a and #5b, is scheduled for
beyond M18.

3.4 Summary

This section presented datAcron modules and the design of respective �ows involving these
modules. In essence, this de�nes the software design of the integrated prototype. In addition,
we presented the status of the �fast prototype� that was developed in M18, and showed that
all datAcron technical work packages provide software modules in an integrated prototype that
demonstrates basic and critical functionality for the project and its objectives.
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4 Conclusions & Outlook

In this deliverable, we report the software design on M18 of the project, which is subject to
revisions and optimizations in the second part of the project. The main point is that an early in-
tegrated prototype has been developed, thus achieving inter-communication between the di�erent
solutions implemented by the technical work packages.

This prototype demonstrates its functionality and operation in real-time processing and on-
line scenarios, most notably with low-level event detection, generation of trajectory synopses,
semantic enrichment of positional data with contextual and weather data, as well as with higher
data analysis tasks, including future location prediction, complex event recognition and forecast-
ing and real-time visualizations. Also, the prototype is able to demonstrate batch processing
of a limited set of queries over integrated RDF data, using Spark as a Big Data platform for
development.

In the second iteration, the plan is to improve this prototype and extend its functionality in
di�erent ways:

� extend the functionality of individual modules, in order to optimize their internal operation,

� evaluate and if necessary re�ne the implementation to achieve the required latency con-
straints in real-time processing,

� provide a richer suite of queries over the distributed RDF store, thereby enabling retrieval
of enriched data sets using a wide variety of �ltering criteria, which can be used for data
analysis tasks,

� develop and integrate with WP2�WP4 the o�ine analytics, described as Flows #6�#8.

Overall, the software design of the integrated datAcron prototype proceeds according to
plan, and in this report we already presented integrated functionality, which is planned to be
demonstrated in the �rst review of datAcron.
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A The datAcron Cluster

The datAcron infrastructure consists of a cluster of 10 physical nodes with the following speci�-
cations:

� CPU Intel Xeon E5, 6 cores, 1.6GHz

� 128GB DDR4 RAM

� 6TB HDD + 200GB SSD

� 1Gbit connection to the outside world

Node 1 is con�gured as NameNode and Resource Manager, while Nodes 2 � 10 correspond to
DataNodes.

In terms of software versions, we have installed in all machines:

� Ubuntu: 16.04.2 (kernel 4.4.0) x64

� Java: 1.8.0_121

� Hadoop, HDFS, YARN: 2.7.2

� Spark: 2.1.1 (with Scala 2.11.8)

� Redis: 3.2

� Scala: 2.11.7

� Flink: 1.2

� Con�uent: 3.1.1

� Vagrant: 1.9.1

� Python: 2.7.12

� Ansible: 2.3.0

We also provide more details with respect to HDFS and YARN (a container is either a map
or a reduce task):

� HDFS

� Total available space: 48.35 TB (5.37TB on each node)

� Replication factor: 3

� Total e�ective space: 16.12 TB

� YARN

� Total available vCores: 90 (10 on each node)

� Total available ram: 360GB (60GB on each node)

� Minimum container ram size: 1GB

� Maximum container ram size: 10GB

The above speci�cations describe the capabilities of our infrastructure in terms of resources,
more speci�cally storage, memory, networking, and processing.
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