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EXECUTIVE SUMMARY 
The datAcron Aviation final validation report, D6.6, contains a detailed description of the developed 

activities to validate the output datasets from datAcron project, as well as results and conclusions 

from the point of view if the aviation domain.  

This deliverable aims to be a reference for further research in big data projects within the aviation 

domain, taking into account that datAcron has paved the way of these new investigations. 

In this document, the reader will also find a deep analysis of the results obtained from de datAcron 

project within the aviation domain, which was split into two different subdomains: Flow Management 

and Flight Planning. These subdomains, in turn, are divided into three scenarios for flow management, 

and into ten scenarios for flight planning. DatAcron Aviation final validation report D6.6, provides 

detailed results and lessons learnt for the thirteen scenarios aforementioned. 

Finally, as a wrap up deliverable, this document provides with conclusions for both subdomains (flow 

management and flight planning) and several recommendations for further investigation, taking into 

account the great knowledge that has been achieved with datAcron project. 
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1. INTRODUCTION 

1.1 Purpose and Scope 

Experiments validation is the last step of the WP6 development, after the definition of the data 

provided, the description of the scenarios and the experiments development. This document intends 

to be used by all datAcron partners, and not only for subject matter experts. 

Once the basis of the different ATM scenarios has been understood by all partners, and comprehensive 

description of the experiments has been performed by the different work packages, this deliverable 

specifies the steps to perform the validation of the results per each aviation scenario. The document 

specifies all the details needed to perform the validation in a rigorous and repeatable way: what exactly 

has been measured and how, and thresholds defining good or bad results have been included. 

This document also aims at clarifying the conclusions and recommendations and the description of the 

datAcron global ATM results. 

 

1.2 Approach for the Workpackage and Relation to other Deliverables 

The technological developments in datAcron have been validated and evaluated in user-defined 

challenges that aim at increasing the safety, efficiency and economy of operations concerning moving 

entities in the Air-Traffic Management and Maritime domains. The overall objective of work package 6 

(WP6) is to validate the research results by means of experiments relevant to an Aviation Industry 

(ATM) use case. It relates directly to proposal objective 5: “[O.5] Validation and evaluation of the 

datAcron system and individual components on the surveillance of moving entities in the ATM and 

marine domains.” 

This document constitutes the explanation of the validation processes carried out during the last phase 

of datAcron. Thus, this deliverable is the one that closes the work of WP6, collecting and 

complementing the information that has been developed by WP6 along the duration of the project, 

which has been presented in the following deliverables: D6.1 [5] Aviation use case detailed definition, 

D6.2 [6] Aviation data preparation and curation, D6.3 [7] Aviation experiments specification, D6.4 [8] 

Aviation data preparation and curation and D6.5 [9] Aviation prototype set-up. 

 

1.3 Methodology and Structure of the Deliverable 

This document has been developed by operational and industry experts and provides a detailed 
description of the validation processes carried out in each validation scenario. 

For each scenario the same structure has been followed: 

 Detailed results per scenario. 

 Confidence in validation results. 

In addition to this detailed description, this deliverable provides with two sections of datAcron 
global ATM results and conclusions and recommendations. 
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2. CONTEXT OF THE VALIDATION 
 

2.1 datAcron description 

The main objective of datAcron is to improve the management and the exploitation of big amounts 

of data and from different sources datasets in order to have a better understanding of the Air Traffic 

Management (ATM) domain. This better understanding will aim to advance the capacities of systems 

to promote safety and effectiveness of critical operations for large numbers of moving entities in large 

geographical areas. 

In this way, datAcron aims to enhance the decision making process for flow management and flight 

planning, taking into account the predictions based on big data procedures that provides an improve 

information dataset.  

 

2.2 Summary of the validation 

The validation has been performed after the integration of the different elements of the architecture 

of datAcron and the set-up of the prototype. The system was trained with data from one month and 

the validation has been carried out with data from three weeks from May, June and July 2016; of course, 

the training and the validation dataset were completely different. 

The validation has been performed comparing the prediction obtained by the datAcron prototype 

and the real data, and taking into account the metrics that were described in D6.3, Aviation Experiments 

specification [7]. Thus, in every scenario that is described in the next section, the document shows the 

steps followed to assess the metrics aforementioned, such as usability and responsiveness, accuracy, 

completeness, etc. 
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3. DATACRON VALIDATION RESULTS 

3.1 Summary of the results per scenario 

FM01 

The objective of scenario FM01 is to reproduce Flow Management Behaviour by predicting regulations 
in the general situation where the demand is over the sector’s capacity. From regulations prediction, it 
is possible to obtain patterns that allow a better understanding on how regulations are set. These 
patterns are temporal, spatio-temporal or dependant.  
 
Regulation prediction is performed for three validation weeks in the year 2016, based on a training data 
on one month of the same year (April 2016). These three weeks for which validation results are 
obtained are: 01 – 07 May 2016, 12 – 18 June 2016 and 10 – 16 July 2016. The regulation prediction is 
obtained as an outcome of a machine learning problem stated in deliverable D3.5 [1]. This machine 
learning is performed on two types of classifiers: Random Forests (RF) and Conditional Random Fields 
(CRF). For a detailed description and justification of the use of both classifiers, please referrer to the 
referenced deliverable. 
 
For validation purposes, several metric are developed and explained accordingly in deliverable D6.3 [7]: 

 Usability and responsiveness 

 Performance 

 Completeness 

 Accuracy 
 
However, before explaining the results of validation activities, it is important to note that the main 
outcome of scenario FM01, which is regulations, is obtained following sector configuration predicted 

by datAcron algorithm. Nevertheless, these predicted configurations do not accurately match reality 

and therefore, this has implications in regulation prediction that should be taken into account. 
Regulations are predicted on the sectors opened at each time, so if sectors are not accurately predicted 
the demand-capacity problems are identified in sector not open in the reality but in the prediction and 
at the end the result is not the desired one: not accurate regulation prediction. For this reason, targets 
for each of the validation metrics are lowered in accordance to take into account the side effect of 
inaccuracies in configuration prediction, as we understand the complexity of the problem. 
 
Features used for regulation prediction include, among others, the number of flights passing through a 
sector, the mean number and standard deviation of flights for the past 20 minutes, and the average 
feature vectors of neighbouring active sectors. Based on this features, the results of scenario FM01 are 
presented below. 
 
Usability and responsiveness evaluates the HMI for regulation prediction. The tool has been developed 
to show configurations and play with their visualisation, as shown in Figure 1 . It also show regulations 
predicted, as represented in Figure 2. The tool is easy to use and understands, with a wide range of 
visualisation options available and a user-friendly interface, so it could be said that this metric is 
accomplished. However, the tool should be further refined in order to account for specific requirements 
set by the operator who is going to use to tool in support of its task. 
 
Performance indicates the degree of achievement obtained by the algorithm in terms of regulation 
prediction. This indicator has changed with regards to the one described in deliverable D6.3 [7] so as 
to measure the achievement of the algorithm and better reflect this area. 
Performance of the algorithm is interpreted from the combination of three metrics: precision, recall 
and F1 score. Precision accounts for the ratio of correctly predicted positive observations to the total 
of predicted positive observations; recall measures the ratio of correctly predicted positive 
observations to all observations; and F1 score is a weighted average of precision and recall values. 
These metrics are calculated from the confusion matrix that indicates the number of true positives (tp), 
true negatives (tn), false positives (fp) and false negatives in each class of the prediction. In scenario 
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FM01, only two classes are considered when dealing with regulation predictions: regulation and no 
regulation and resulting confusion matrices are presented in Table 1 (a) – (d). 
 

 
Figure 1: Top part shows the 3D visualization of sectors in the tool, and bottom part the changes in configuration 
as seen in the tool. 

 

 
Figure 2: Left image shows aggregated unregulated flights and right image the aggregated flight delayed due to 
ATC capacity imbalances. In both the pie chart represents the number and proportion of flight arriving and 
departing, and the curved lines the aggregated movements between each origin and destination. 
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 Predicted Class 

  
Class: 
REG 

Class: 
No REG 

Actual 
Class 

Class: 
REG 

1148 15635 

Class: 
No REG 

48899 2925 
 

  Predicted Class 

  
Class: 
REG 

Class: 
No REG 

Actual 
Class 

Class: 
REG 

2832 31303 

Class: 
No REG 

66314 2303 
 

(a) (b) 

  Predicted Class 

  Class: 
REG 

Class: 
No REG 

Actual 
Class 

Class: 
REG 

8265 71437 

Class: 
No REG 

58018 2064 
 

 

  Predicted Class 

  Class: 
REG 

Class: 
No REG 

Actual 
Class 

Class: 
REG 

12245 118375 

Class: 
No REG 

173231 7292 
 

(c) (d) 

Table 1: Confusion matrices for each of the three validation weeks: (a) 01-07 May 2016, (b) 12-18 June 2016, 
(c) 10-16 July 2016 and (d) global value of the validation. 

From the confusion matrices, precision, recall and f1_score are calculated, as reflected in Table 2. 
Precision is calculated as p=tp/tp+fp; while recall is calculated as r=tp/tp+fp and f1 score as 
f1=2*(recall*pecision)/ (recall+precision).  
 
  

precision recall F1_score 

May 2016 0,0229 0,0684 0,0344 

June 2016 0,0410 0,0830 0,0548 

July 2016 0,1247 0,1037 0,1132 

Total 0,0660 0,0937 0,0775 

Table 2: Values of precision, recall and F1 score for the three validation weeks for regulation prediction, as well 
as the global value. 

The overall values of the three metrics are below 10%, so the target performance of the algorithm is 
not achieved. 
 
Completeness reflects the percentage of information which is lost. This metric is the result of the ratio 
of regulation predicted to real regulations. A total of 721 regulations (in absolute numbers, not refer to 
tp, tn, fp and fn values as they are refer to 20 minute-step decomposition of regulations) were predicted 

by datAcron algorithm whereas 954 regulations took place in reality during the three validation 

weeks. The 721 regulations predicted by datAcron algorithm, however, are not all correct: only a 

small percentage of them is correct. Completeness of the metric is therefore considered as not 
achieved, since the precision, recall, and f1 scores are so low that information is being lost due to the 
inaccurate regulation prediction. 

DatAcron algorithm misses regulations in several airspaces, while tends to remain in the conservative 

side not assigning too many regulations, as shown in Figure 3.  
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Figure 3: Distribution of regulations predicted by datAcron algorithm and real regulations per national 

airspaces. National airspaces are as follows: EB, Belgium; ED, Germany; EE, Estonia; EG, Great Britain; EH, 
Netherlands; EN, Norway; EP, Poland; GC, Canary; LC, Cyprus; LD, Croatia; LE, Spain; LF, France; LG, Greece; LH, 
Hungary; LJ, Slovenia; LO, Austria; LP, Portugal; LS, Switzerland; and LZ, Slovakia. 

 
Accuracy is the ratio of correctly predicted regulations to the total of observations. Accuracy is 
calculated as follows: a=(tp+tn)/(tp+fp+fn+tn). Accuracy is a value that should not be evaluated on its 
own, since it works better in symmetric datasets where the value of true positives is similar to the value 
of true negatives. In the case of scenario FM01, it works best for two of the three validation weeks (01-
07 May 2016 and 12-18 June 2016), while for the other it does not, due to the large discrepancy in tp 
and tn. Values of accuracy are shown in Table 3. 
  

precision 

May 2016 0,0229 

June 2016 0,0410 

July 2016 0,1247 

Total 0,0660 

Table 3: Values of accuracy for the three validation weeks for regulation prediction, together with the global 
value. 

The overall values of accuracy is below 10%, so the target accuracy of the algorithm is not achieved. 
 
Confidence in Validation Results: 
 
As an overall conclusion of the scenario FM01, regulations prediction should be improved. At the 
moment, accuracy and precision values are so low that are not acceptable. A first step on improving 
prediction it is suggested to carry out a deeper investigation on factors affecting regulation setting so 
as to be able to replicate flow management behavior and obtain a better performing machine learning.  
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FM02 

 
The objective of scenario FM02 is to predict imbalances between demand and capacity values. These 

imbalances are calculated based on the configuration predicted by datAcron algorithm and on entry 

counts (entries to the sector). Imbalance prediction analysis allows the identification of propagation of 
consequences of regulations as well as dependencies on window length. 
 
Imbalance prediction is performed for the same three weeks as regulation prediction: 01 – 07 May 
2016, 12 – 18 June 2018 and 10 – 16 July 2016. As in scenario FM01, the machine learning performed 
to obtained results in this scenario is explained in detailed in deliverable D3.5 [1]. 
 
The metrics used to validate results are explained in deliverable D6.3 [7], although they have subtle 
differences compared to the definitions given in that deliverable that are explained in the remainder of 
this section: 

 Usability and responsiveness 

 Performance 

 Completeness 

 Accuracy 
 
As in the case of scenario FM01, scenario FM02 is dependent on configuration prediction, so expected 
targets for each metrics indicated in deliverable D6.3 [7] are lowered accordingly due to the complexity 
of the problem of configuration prediction, as explained in previous section. There are several possible 
configurations available per ACC, and for each time-period, a set of parameters is given. Based on this, 
the configuration set on reality should be decided. To make it work, and accurately identify the correct 
configuration among all possibilities, decision parameters should be refined. 
 
This scenario has a substantial link with configuration prediction and therefore a performance analysis 
of the configuration prediction is done. To carry out the analysis, the same performance metrics as in 
FM01 are used: precision, recall and f1 score. The values of each metric are shown in Table 4. 
  

precision recall F1_score 

May 2016 0.5855 0.5785 0.5801 

June 2016 0.4952  0.4982 0.4941 

July 2016 0.5247 0.5290 0.5247 

Total 0.5352 0.5352 0.5330 

Table 4: Values of precision, recall and F1 score for the three validation weeks for configuration prediction, as 
well as the global value. 

Results on precision, recall, and f1 scores for each airspace with at least 2 different configurations are 
shown in Figure 4 to Figure 6 (a) – (d), correspondingly;  

  
(a) (b) 
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(c) (d) 

Figure 4: Precision values for configuration prediction for each of the 108 airspaces with at least 2 different 
configurations in (a) 01-07 May 2016, (b) 12-18 June 2016, (c) 10-16 July 2016 and (d) global. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5: Recall values for configuration prediction for each of the 108 airspaces with at least 2 different 
configurations in (a) 01-07 May 2016, (b) 12-18 June 2016, (c) 10-16 July 2016 and (d) global. 

  
(a) (b) 
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(c) (d) 

Figure 6: F1score values for configuration prediction for each of the 108 airspaces with at least 2 different 
configurations in (a) 01-07 May 2016, (b) 12-18 June 2016, (c) 10-16 July 2016 and (d) global. 

 
In an overall view, configuration prediction is around 50%, which indicates that configuration prediction 
should be refined in order to improve results on prediction on other aspects such as regulation and 
imbalance prediction. 
 
Given the need on improvements on configuration prediction, imbalance prediction is evaluated in only 
certain airspaces. These airspaces have been chosen based on a clustering analysis that classifies ACC 
in 3 groups according to their precision, recall and f1 scores, where the group 1 corresponds to low – 
performance scoring ACCs, groups 2 to medium performance ACCs and group 3 to high performing 
ACCs, as seen in Figure 7. ACCs in low-performing group, share a common characteristic, they all have 
a large number of possible configuration, with a maximum of 345 possible configuration and a mean of 
101. On the contrary, groups 2 and 3 have a similar number of possible configuration, with a mean of 
19 and 21, correspondingly. 
 

 
Figure 7: Clustering analysis (k-means) of configuration prediction based on performance results in 3 groups. 

Imbalance analysis is based on these 3 groups. One representative ACC of each group has been chosen 
based on the average characteristics (number of configuration, primarily) of each of the three groups 
to conduct the validation activities, being the selected: 

 GCCCAC – Group 1 
 ESOSCTAN – Group 2 
 EDWWCTAS – Group 3 
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Usability and responsiveness evaluates the reliability of presented window length to detect 

imbalances. In FM02, datAcron tool uses similar visualisation techniques as in scenario FM01, since 

data is of the same structure. The offline visual analytics component offers sundry filtering tool to 
display and compare demand and capacity events in space (see Figure 8), time and a combination (see 
Figure 9) in both. As already said, it is a user-friendly interface, which needs some refinement to adapt 
it to operator needs, but it could be said that this metric is accomplished.  
 

 
Figure 8:  Spatial distribution of demand-capacity imbalances in Spanish airspace. The color code represent the 
severity of the imbalance from lowest (yellow) to highest (red). 

 
Figure 9: Spatio temporal distribution of imbalances in Spanish airspace. 

Performance indicates the degree of achievement obtained by the algorithm in terms of regulation 
prediction and its calculated based in three metrics: precision, recall and f1 score, as in scenario FM01. 
Results of these three metrics are summarised in Table 5. 
   

precision recall f1 score 

EDWWCTAS 

w1 0,1818 0,8333 0,2985 

w2 0,0909 0,1765 0,12 

w3 0,0896 0,3529 0,1429 

mean 0,1208 0,4542 0,1871 

ESOSCTAN 

w1 0,0238 0,1667 0,0417 

w2 0 0 0 

w3 0 0 0 

mean 0,0079 0,0556 0,0139 

GCCCACC 

w1 0,1641 0,0879 0,1145 

w2 0,1462 0,0831 0,106 

w3 0,1765 0,1041 0,131 

mean 0,1623 0,0917 0,1172 
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Table 5: Summary of results on precision, recall and f1 score for the 3 validated ACC in the 3 validation weeks. 

 
Performance of scenario FM02 is calculated following the same methodology as in FM01 performance 
calculations: predicted and real imbalances are calculated in 20 minute intervals. The overall values of 
the three metrics are below 10%, so the target performance of the algorithm is not achieved. 
 
Completeness evaluated the percentage of information which is lost. This is evaluated based on the 
number of true positives and negatives, as well as in the amount of false positives and negatives. These 
values are summarized in Table 6: 
   

tp tn fp fn 

EDWWCTAS 

w1 10 457 45 2 

w2 3 458 30 14 

w3 6 448 61 11 

ESOSCTAN 

w1 1 462 41 5 

w2 0 483 17 4 

w3 0 463 42 2 

GCCCACC 

w1 32 239 163 332 

w2 31 221 181 342 

w3 48 188 224 413 

Table 6: Summary of true positives and negatives, as well as false positives and negatives in the 3 ACCs. 

DatAcron algorithm misses imbalances (fn) in the three airspaces, particularly in GCCCACC, while 

tends to detect false imbalances (fp). In view of these, the completeness target is not achieved. 
 
Accuracy is the ratio of correctly predicted regulations to the total of observations. Results are 
summarized in  

EDWWCTAS 

w1 0,9086 

w2 0,9129 

w3 0,8631 

ESOSCTAN 

w1 0,9096 

w2 0,9583 

w3 0,9132 

GCCCACC 

w1 0,3538 

w2 0,3252 

w3 0,2703 

Table 7: Accuracy values for the 3 ACC during the 3 validation weeks. 

The overall values of accuracy is good for ACC EDWWCTAS and ESOSCTAN, but remains below the target 
set in D6.3 of 99% so the target accuracy of the algorithm is not achieved. Moreover, these are single 
results of 3 representative ACCs of each group, so it could not be extrapolated to the rest of ACCs. 
 
Confidence in Validation Results: 
 
As an overall conclusion of the scenario FM02, imbalance prediction should be improved to obtain more 
reliable values of accuracy, precision, recall and f1 score. Additionally, it should be further examined if 
results are applicable to all ACC in each group. 

FM03 

The objective of scenario FM03 is to assess the resilience and prediction capability of the machine 
learning performed to identify whether regulations are required or not under certain imbalances 
situations. For this reason, FM03 requires both the input of FM01 and FM02, that is, imbalances 
predicted (FM02) and situations in which these imbalances led to a regulation (FM01). Given this and 
the low percentage of accuracy achieved in both scenarios required to conduct analysis of this scenario, 
FM03 scenario has been discarded and left for future research.  
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FP01 

According to D6.3 [7] the FP01 scenario objective was to demonstrate how datAcron trajectory 

reconstruction capability is useful for building the real trajectories of aircraft both off-line and real-
time. 

Final datAcron architecture made unnecessary to differentiate off-line (stored) and real-time in the 

validation since the system uses exactly the same components for both settings. 
The validation criteria defined in D6.3 [7] are: 

● Usability. 

● Responsiveness. 

● Performance. 

● Realism. 

● Compression. 

● Completeness. 

● Accuracy.  

 
Regarding usability, the user is able to retrieve reconstructed trajectories by the activities of FP01 by 

querying the datAcron distributed RDF store. Since the reconstructed trajectories have been 

transformed in RDF, in accordance with the datAcron ontology, and queries based on SPARQL are 

supported on top of the distributed RDF store, reconstructed trajectories can be retrieved in different 
ways. 
 
For instance, the user can specify different criteria for retrieving reconstructed trajectories, including: 
starting or destination airport/s, aircraft information (e.g., aircraft type/s, callsign, airline/s, crossed 
airblocks), or time. In addition, trajectory retrieval based on more complex criteria is also possible due 
to underlying data being linked and represented in RDF. Indicative examples of more complex data 
retrieval are provided below: 

 Retrieval of trajectories starting in Spain, when no airport is provided. 

 Retrieval of pairs of airports connected by trajectories crossing a specific airblock. 

 Retrieval of the reconstructed trajectory for a given flight plan. 
 
Retrieval of reconstructed trajectories has been evaluated on different surveillance data sources (IFS, 
ADS-B, Flightaware) and is supported based on the description above.  
 
In summary, the system is flexible to use when querying reconstructed trajectories, due to: (a) the 
linking of surveillance data with operational context information (airports and aircrafts database) at 
data acquisition time, and (b) the use of a declarative query language (SPARQL) that supports flexible 
querying of the reconstructed trajectories that have been transformed to RDF. 
 
Regarding the responsiveness of the system while reconstructing trajectories, this is considered 
acceptable and in accordance with the requirements reported in D6.3 [7], since the reconstruction 
process is performed in an online manner, it is parallelizable (by aircraft ID), and incurs minimal 
processing overhead.  
The second aspect of responsiveness concerns querying the reconstructed trajectories, after they have 
been transformed to RDF and stored in the system, using different specific criteria (filters) related to 
airports and aircrafts. To test the system’s responsiveness, we used the ADS-B surveillance data set 
referring to the entire space of Europe for a week of April 2016, which contains approximately 95 
million records in RDF format. Provided with an aircraft manufacturer name (e.g Boeing), the system 
can retrieve all reconstructed trajectories of the manufacturer’s aircrafts, in a reasonable amount of 
time, by querying the RDF data in parallel. More specifically, based on the aforementioned data set, 
the system can retrieve, in less than 6 seconds, approximately 2 million trajectory points that belong to 
Boeing aircrafts. This amount of time is considered to be acceptable in most cases of offline data 
analysis tasks. 
 



 D6.6 Aviation Final Validation Report H2020-ICT-2015  28/12/18 
 

Page 21 of 47 

Regarding performance, the trajectory reconstruction process is performed in an online way by 
identifying successive positions of the same moving object from the stream of all moving objects. This 
is performed very efficiently by partitioning based on object identifier without major computational 
overhead. 
Besides the reconstruction of individual positions, the trajectory data is linked with aircraft and airport 
information. Again, this step is efficiently performed because (a) the size of these databases is fairly 
small and fit in main memory, and (b) linking is based either on exact matching of identifiers or on 
simple distance computation.  
The reconstruction time for the IFS data set (1 week of data, 11-17 April 2016, 1,689,540 records) is 
~2,300 sec when processed on a single node, which corresponds to a throughput rate of ~735 records 
per second. As already mentioned, the process is parallelizable in a straightforward manner when 
partitioning by object identifier. 
 
Regarding Realism, the validation has been focused on the reconstruction of trajectories of the IFS 
system, which is a better option for build the ground truth for comparison: Since the ground truth need 

to be built totally independently of datAcron prototype, IFS allows the end-user to know exactly the 

right departure and destination of each flight, this will not be possible for other surveillance sources 

while the method used in datAcron is independent of the source, so the validation is fair  using IFS. 

The dataset used for validation corresponds to a set of controlled flights for the period April 11th 2016 
to April 17th 2016, it contains positions for 8652 trajectories which have a unique callsign, departure 

and destination. In datAcron reconstructed trajectories (resulset in datAcron file store path / 
datAcron /WP1/FP01_20180601) we found 179 trajectories with a departure or destination assigned 

with a deviation greater than 700 meters from the right departure or destination; so the right enriched 
trajectories are 8473 (8652 – 179) which represents a 98% of right reconstructed trajectories and an 
error rate of 2%. 
We observed most errors are for flights of small aircrafts of little interest to dataAcron scenario, so we 
focus on a set of 3250 trajectories corresponding to big aircrafts (airliners) and we found just 27 with a 
departure or destination assigned with a deviation greater than 700 meters, so the right enriched 
trajectories are 3223 which represents a 99.2% of right reconstructed trajectories and an error rate of 
0.8%.  
In both cases the ratios are in the thresholds defined in D6.3 [7]. 
 
Regarding Compression the validation is based on the results published in [18]. The details of the 
compression achieved ere explained in deliverable “D2.3 [1] Cross-streaming, real-time detection of 
moving object trajectories (final)”. Results are summarized in next figure, “Compression ratio over 
original datasets” 
Regarding Completeness, the validation has focused on the reconstruction of the IFS trajectories as 
these are the only ones that have a minimum guaranteed integrity and that have already been labelled 
per individual flightkey (i.e. flight leg). These two characteristics follow from the fact that the 
trajectories originate from an ANSP, which owns a broad network of radars/ADS-B receivers and 
manages the flight plans in its airspace. In particular, we have focused on all the flights occurring 
between 11-APR-2016 and 17-APR-2016 that have either take-off or landing included in the original 
dataset, thus eliminating overflights. This means that from the 37372 initial trajectories occurring 

during those days, datAcron has reconstructed 8652 trajectories having either take-off or landing 

within the airspace domain of the ANSP. However, the use of high quality dataset is needed in order to 
do proper validation “out of the system”, but doesn’t imply algorithms won’t work in other datasets. 
A first look into the reconstructed trajectories showed that only 6594 trajectories (i.e. 76.21%) 
univocally correspond to a single flightkey. This means that in some cases the reconstructed trajectories 
blend information from different flight legs, and in other cases multiple reconstructed trajectories refer 
to the very same flight leg. For the purpose of validating Completeness and Accuracy we only focused 
on the resulting 6594 trajectories as these are the only trajectories that are actually comparable to a 
real flight track from IFS. 
When looking at Completeness we find that the reconstruction algorithm is time driven, which basically 
means that any position between the initial and final synopses timestamps could be retrieved. 
Following this criterion, and based on the 6594 resulting trajectories that univocally correspond to a 
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single flightkey, we find that datAcron is able to retrieve 4111127 of the 4187711 track positions, that 

is, 98.17% of the positions of the IFS flight tracks. 
 

 
Figure 10: Compression ratio over original datasets 

 
Regarding Accuracy the validation is based on the results published in [18]. The validation included 
ADSBHub, FlightAware and IFS flight tracks. In addition, a synthetic version of IFS tracks was also 
considered. The validation assessed how accurately the original track positions could be recovered from 
the trajectory synopsis, and evaluated both horizontal and vertical accuracy. Accuracy was measured 
by means of the RMS error of the horizontal and vertical positions of every trajectory under 
consideration, and then evaluating the average of the RMSEs. The validation results are summarized in 
next figure, “Quality of trajectory approximation”: 
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Figure 11: Quality of trajectory approximation 

It can be seen that the attainable RMSE for the horizontal position spans between 500 and 1700 metres, 
depending on the data source and the trajectory synopsis settings. Notice that this RMSE is significantly 
higher than the originally proposed target of 0.01-0.02 nautical miles, and results from the inherent 
limitations of the trajectory synopsis-reconstruction technique applied. It is important to notice the 
prototype could meet any target (e.g. 0.0001 n.m.) since there are techniques to bound the 
approximation error. However, this would result in (a) minimal compression, and (b) non-operational 
time synopses extraction, both of which would have significant negative impact in several tasks of all 
WPs. 
As for vertical position, the attainable RMSE spans between 150 and 550 feet, also depending on the 
data source and synopsis settings. This RMSE is somewhat higher than the originally proposed target 
of 200-300 feet, and also results from the limitations of the applied technique. 
 
Confidence in Validation Results  
This scenario validation has been limited to management of high quality data sources. This only affects 
Realism, Compression, Completeness and Accuracy metrics which may differ for poor quality data 
sources. Results are better in general when we focus on big aircrafts (airliners) which are the more 
interesting for the project. 
Regarding compression, as stated in D2.3 [1], naturally, when positions are reported more often (as in 
IFS), many more of them may be discarded as “normal” and hence lead to increased compression of as 
much as 85%. Instead, this ratio can get up to 78% for ADSBHub, and only 62% for FlightAware, because 
ADS-B messages from these two sources have a lower reporting frequency, so an incoming position 
may indicate an important change in mobility and thus has more chances to be detected as critical. 

In general the validation shows datAcron prototype is useful for building compressed trajectories 

applying all the development from the dataAcron project. 
 

FP02 

According to D6.3 [7] the FP02 scenario objective was to demonstrate how datAcron data 

management capability can help for add (link) new data to real trajectories (enrich trajectories). The 
trajectories reconstructed from the surveillance data (ADS-B messages and/or radar tracks) need to be 
enriched with data from the aircraft (when known), data from the weather, operational context data, 
and associated Flight Plans. 

Final datAcron architecture made unnecessary to differentiate off-line (stored) and real-time in the 

validation since the system uses exactly the same components for both settings. 
The validation criteria defined in D6.3 [7] are: 

● Usability. 

● Responsiveness. 

● Performance. 

● Realism. 

● Completeness. 
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Regarding usability, the usability aspects of FP02 are completely aligned with the ones analyzed in the 
context of FP01. Using SPARQL queries the user is able to filter enriched trajectories using different 
criteria (e.g. among others: weather, SID/STAR, callsign, airline/s) and can indeed retrieve all the 

associated enriched trajectories. Due to the expressiveness of the datAcron ontology [10] and support 

for representing enriched trajectories at multiple levels of abstraction, the user can retrieve results with 
many different options, thus increasing the usability of the system. Therefore, the results are in 
accordance with the specifications and requirements in D6.3 [7]. 
 
Regarding Responsiveness,  the system queries the aforementioned enriched ADS-B data set, and 
retrieves, in less than 2 seconds, the subset of trajectory points, which have a given, user-specified 
temperature value. This response time is acceptable, since the system returns 357 trajectory points 
from a data set consisting of approximately 5 million trajectory points. 
 
Regarding Performance, the trajectory enrichment is performed online using the spatio-temporal link 

discovery framework proposed in datAcron, which has been implemented in Apache Flink to ensure 

scalability. Obviously, its performance depends on many different parameters [10], including: the 
complexity of the spatial or spatio-temporal relation to be discovered, the size and complexity of the 
data set to be associated with the surveillance data, etc. In the following, we report some of the results 
obtained using the IFS data set for different enrichment (i.e., link discovery) tasks, which clearly 
demonstrate that the performance is acceptable and within the expectations of D6.3 [7].  
For the trajectory enrichment task of linking trajectory nodes with airblocks (relation: within, 3D) the 

achieved processing rate is 6,500 records per second, when using the datAcron cluster of 10 physical 

nodes. Regarding weather integration, i.e., associating surveillance nodes with weather information, 
the achieved performance is even better (around 15,000 records per second) even with a centralized 
implementation. In general, the measured performance totally matches and exceeds significantly the 
expectations of D6.3 [7], which required managing to perform the trajectory enrichment task for one 
day of trajectories within a few hours. 
 
Regarding Realism the validation has been focused on the enrichment of trajectories of the IFS system, 
which is a better option for building the ground truth: Since the ground truth needs to be built totally 

independently of datAcron prototype, IFS allows the end-user to know exactly the waypoints crossed 

by each flight; this will not be possible for other surveillance sources while the method used in 

datAcron is independent of the source, so the validation is fair using IFS. The dataset used for 

validation corresponds to a set of controlled flights for the period April 11th 2016 to April 17th 2016. In 

datAcron reconstructed trajectories we found 6218 trajectories enriched which different data, and 

we’ll focus on the list of waypoints crossed by these trajectories for the realism validation. A waypoint 
is considered as crossed if the trajectory crosses a circle of 300m radio around the waypoint (see D6.3 

[7]). Targeting the trajectories of big airliners, the main interest for datAcron project, there are 29177 

waypoints known as crossed (the ground truth for 3141 trajectories), from which the datAcron 

resulting dataset contains 25246, representing 87% ratio of success. Looking at the waypoints identified 

by datAcron we found 472 waypoints in the resulting dataset which are not in the list of known 

waypoints (ground truth) presented in 384 trajectories. This means there are a 12% (384/3141) of 
trajectories with some waypoint wrongly assigned, which presents a deviation from the original target 
(2%). Looking into the details, trajectory with big gaps like the ones from Spain to Canary Island are 
affected by deviations due to missing point near the gaps: Thus, it seems that the use of synopsis can 
affect the quality of some tasks, in this case "identifying waypoint crossing" so they seem good for 
representing a trajectory in compressed form in the general case, but for computing accurate spatial 
relations it may incur errors. 
 
Regarding Completeness the validation has been focused on the Flight plan assignment for trajectories 
of the IFS system, which offers a better ground truth for comparison. The dataset used for validation 
correspond to a set of controlled flights for the period April 11th 2016 to April 17th 2016, it contains 
positions for 8652 trajectories which has a unique callsign, departure and destination. For this dataset 

during validation it was possible to find flight plans for 6926 trajectories. In datAcron resulting dataset 
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(resulset in datAcron file store path / datAcron /WP1/FP02_20180604) the trajectories with a flight 

plan amounts to 6122, so the Completeness achieved is 88%, which is acceptable. 
 
 
Confidence in Validation Results 
This scenario validation has been limited to high quality data sources. This only affects to Realism and 
Completeness metrics which may differ for poor quality data sources. In general the validation shows 

datAcron prototype is useful for enriching trajectories applying all the developments from the 

dataAcron project. 
There is some limitation in the use of synopses, which is good for storing historical trajectories in 
compressed form, but for some link discovery tasks (e.g., waypoint crossing, sector enter/leave, etc.) 
they show some limitations. It seems for very precise geospatial computation the synopsis of the 
prototype is not that accurate, but this can be adjusted to different levels of compression as explained 
in “D2.3 [1] Cross-streaming, real-time detection of moving object trajectories (final)” 
Both FP01 and FP02 point to new research lines in which dealing with poor quality data will be the main 
challenging research topic. 
 

FP03 

According to D6.3 [7] the FP03 scenario objective is to demonstrate how datAcron can serve to detect 

complex events on real trajectories of aircraft off-line. 

Final datAcron architecture made unnecessary to differentiate off-line (stored) and real-time in the 

validation since the system uses exactly the same components for both settings. 
The validation criteria defined in D6.3 [7] are: 

● Usability. 

● Responsiveness. 

● Performance. 

● Realism. 

● Completeness. 

● Accuracy.  

 
Regarding Realism, Completeness and Accuracy, the validation has been focused on the detection of 
four types of complex events:  

- Top of Climb (TOC): The aircraft reached its cruise altitude and then maintain the level; 
- Top of Descent (TOD): The aircraft started to descent from its cruise altitude;  
- Holdings (Holding): The aircraft enters in holding stack in where it performs 360º turns in 

around 4 minutes (typically holding stacks are formed by four 1 minute legs);  
- Deviation from the flight plan: The aircraft deviated from the path prescribed by the flight plan 

more than a certain distance (in the validation we considered 7km as the threshold distance 
in where the aircraft is off the path) 

The dataset used in this validation are the surveillance, flight plan, weather data corresponding to 24th 
February 2018. A subset of 6279 trajectories with unique callsign, departure, destination and at least 
one event identified were the focus of this analysis.  

The complex events were detected in each trajectory from the synopsis produced by datAcron, 

according to the datAcron architecture. 

The validation was performed using as true reference the synthetic trajectories built from the 
surveillance data with more data-points than the original surveillance (points every second), and 
synthetic trajectories built using the flight plan with again more resolution than the original flight plan 
(points every second). For these true reference trajectories, all the complex events were identified in 
the form of time, altitude, latitude and longitude. The objective of the validation performed here is to 

understand if datAcron identified all the complex events, if there were false identifications (realism 

and completeness) and the accuracy of the detection. This accuracy is checked in the variables time, 
altitude and distance.  
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Regarding realism and completeness, the following table indicates the % of the flights in where 

datAcron identified an event in comparison with the % of the flights in where that event was really 

happening. These results give an indication of the % of false positives generated by datAcron complex 

event recognition algorithms. TOC and TOD are events that should be identified in all the regular flights 
(100%), but as showed here they were successfully identified in only 66.4% of the flights. Deviations 
from the flight plan should not be present in all the flights (according with the criteria chosen, only 

94.9), however datAcron identified Deviations in 100% of the flights. Holdings is a rare event and only 

0.14% of the flights contains a holding event, however datAcron identified 0.48% of the flights with a 

holding. This gives rise to around 20 flights out of 30 with no holding that were marked incorrectly as 
having a holding.  
 

TOC (datAcron %/true%) TOD (%) Deviation(%) Holding (%) TOC & TOD (%) 

72.50/100 73.04 /100 100.00/94.9 0.48/0.14 66.40/100 

  
The next analysis corresponds to the accuracy of the detection of the complex events. When an event 
was detected correctly, we focus on how close was that event to the real one. Positive values indicate 
that the “Complex Event” was detected later than occurred in the reality; whilst negative values stands 
for the cases in which the “Complex Event” detection occurred prior to reality. The results are showed 
per complex event. 
 
Top of Climb accuracy: 
From 4552 flights (72.5% of the initial sample of 6279), 931 flights were discarded due to large 

deviations. Those deviations were due to callsigns not property matched (trajectories in datAcron do 

not match the real trajectory, so probably there were errors in the callsign) and there were flights with 
multiple TOC (step climbs during cruise). For the rest of those flights, Figure 1 shows the errors in time, 
altitude and distance, and occurrence of those errors. 
 

 
Figure 12: TOC errors in time (seconds), altitude (feet) and distance (kilometers) 

Table 6 below shows the average value of those errors. The conclusion is that, when the event is 
detected the accuracy in altitude is very good, but not in time and distance  (~2 min and 26 km after 
the TOC really happened). Depending on the application, these errors in distance and time could be too 
much. There is still a high percentage of flights (around one third of the flights) with a very accurate 
detection (less than 15 seconds and 5 km), which is very promising. 
 

∆t  (s) ∆h (ft) d (km) 

-119.05 12.01 25.97 

Table 8: Average error for the TOC (Accuracy) 

 
Top of descent accuracy: 
From 4586 flights (73.04% of the initial sample of 6279), 965 flights were discarded due to large 

deviations. Those deviations were due to callsigns not propertly matched (trajectories in datAcron 

did not match the real trajectory, so probably there were errors in the callsign) and there were flights 

with multiple TOC (step climbs during cruise) that produces error in the datAcron complex events 
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recognition algorithm. For the rest of those flights (3621), next Figure shows the errors in time, altitude 
and distance, and occurrence of those errors. 
 

 
Figure 13: TOD errors in time (seconds), altitude (feet) and distance (kilometers) 

Table 2 below shows the average value of those errors. The conclusion is that, when the event is 
detected, the accuracy in altitude is very good, but not in time and distance  (~2 min and 25 km prior 
the TOD really happened). Depending on the application, these errors in distance and time could be 
too much. There is still a high percentage of flights (around one third of the flights) with a very accurate 
detection (less than 20 seconds and 5 km), which is very promising 
 

∆t  (s) ∆h (ft) d (km) 

114.48 11.94 24.64 

Table 9: Average error for the TOD (Accuracy) 

The analysis on the TOC/TOD accuracy shows that the detection of these complex events by datAcron 

need to be improved for high demand applications and the clear tendency to identify them within the 
cruise phase segment rather than in the boundaries of the cruise segment (as they are defined) should 
be improved. Adjustments in the criteria to develop the synopsis and/or in the thresholds used in the 
complex event detection could improve these results. 
 
Deviation accuracy: 
From 5959 flights (94.9 % of the initial sample of 6279), 320 flights were discarded due to large 

deviations. Those deviations were due to callsigns not propertly matched (trajectories in datAcron do 

not match the real trajectory, so probably there were errors in the callsign) and there were flights with 

no deviations that datAcron identified as having one deviation. Also, datAcron did not identify all 

the deviations segments1 that occurred in a single flight; datAcron complex event recognition was 

only able to detect a maximum of 2 deviation segments when more than that could occur in some 
flights. Next Figure shows the number of deviation segments occurred in the reality. 
 

                                                                 
1 Deviation segment is defined by the first point in where an aircraft is more than 7 km away from the 

path defined by the flight plan and a second point in where the aircraft is again closer to 7 km from 

the path in the flight plan 
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Figure 14: the number of deviation segments identified by datAcron compared with reality 

For those cases in where the events are comparable, Table 3 shows the average deviations in time, 
altitude and distance. Considering that the initial and final typically events occur in the climb and 
descent segments, it is expected that small errors in time and distance generate high errors in altitude, 
as showed. 

∆t  (s) ∆h (ft) d (km) 

Initial Point Final Point Initial Point Final Point Initial Point Final Point 

288.14 398.52 5598.39 3972.41 39.84 45.49 

Table 10: Errors in time (seconds), altitude (feet) and distance (kilometers) of the initial and final points of 
deviations 

Holding accuracy: 

From 6279 flights, datAcron complex event recognition identified 30 flights with a Holding event. 

From those 30, 9 of them were correctly identified and 21 were wrongly identified. For 3 of those 21 
cases, the source of error seems to be a discrepancy/mismatch in the callsign. For 18 of those 21, 
holding was wrongly detected; although there was a 360º turn, the altitude was not constant and that 
turn corresponds to the procedure (see Figure 12). 
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Figure 15: Hold events: They=ground truth, Us = datAcron prototype 

When the event was correctly identified (9 cases) the error in detection was smaller than in the other 
cases (see next Table) 
 

∆t  (s) ∆h (ft) d (km) 

Initial Point Final Point Initial Point Final Point Initial Point Final Point 

153.46 160.40 1000.22 1114.00 10.23 10.31 

Table 11: Errors in time (seconds), altitude (feet) and distance (kilometers) of the initial and final points of the 
holdings 

 
Confidence in Validation Results 

This scenario validation has been limited to high quality data sources. The validation shows datAcron 

prototype does not achieve the levels of accuracy, realism and completeness indicated in D6.3 [7]. The 
main reason might be the loss of resolution when discarding data samples to form the synopses. 
However, the results are promising and certain aviation applications could make use of the services 

provided by datAcron for complex event detection. 

 

FP04 

According to D6.3 [7] the FP04 scenario objective is to demonstrate how datAcron can serve to predict 

complex events on real trajectories of aircraft off-line. 
The validation criteria defined in D6.3 [7] are: 

● Usability. 

● Responsiveness. 

● Performance. 

● Realism. 

● Compression. 

● Completeness. 

● Accuracy.  

 
Since FP04 relies heavily in FP03 functionality, we have not performed the FP04 validations, since it 
only makes sense once FP03 experiments present improved results. 
 
Confidence in Validation Results 
Since FP04 relies heavily in FP03 functionality, we have not performed the FP04 validations, since is it 
only make sense once FP03 has improved the results. 
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FP05 

In FP05, we are evaluating the ability of datAcron to query spatio-temporal data in order to prepare 

a dataset for subsequent scenarios. 
 
In this validation activity, the contribution of WP4 is key as the visualization of prepared data supports 
checking usability and accuracy, enabling visual observation by an operator in real time. The interaction 
of the operator with the visual analytics tools and the workflow creating and analyzing datasets is 
described in [15]. 
 
Regarding Usability, to meet the objective of FP05, a workflow for filtering data based on spatio-
temporal criteria has been defined. The analyst defines some conditions of interest based on one 
dataset (that can be two or more), creates a time mask, propagates it to the other datasets, and 
examines the features of the selected data subsets. Then, the analyst inverts the time mask and 
investigates the features of the data which were filtered out before. 
That paper shows a practical example where the user is creating a dataset, following this workflow 
performing a geographical query (region of interest is all flights departing or arriving in Spain) and the 
timeframe is 2016. 
The process of interactive time mask filter, described and implemented in the described workflow 
demonstrates the feasibility of creating datasets from the point of view of usability, using the criteria 
defined at D6.3 [7]. 
The following list of queries (defined in D6.3 [7] and D1.10 [11][10]) is supported: filtering of data based 
on spatio-temporal constraint and: 

 All aircraft matching an aircraft type. 

 List of callsign. 

 Origin and destination airport. 

 Regions where the winds are in a selected range. 

 Flight duration is in a selected range. 

 All synopses of trajectories for a particular time interval and geographical region 

 All flight plans for a particular time interval and geographical region 

 All weather data for a particular time interval and geographical region 

 All static and dynamic context data for a particular time interval and geographical region 
 

In summary, the datAcron system supports retrieval of integrated data sets using multiple 

combinations of filtering criteria, primarily spatial and temporal constraints, but also other criteria 
related to contextual information. 
 
Regarding Responsiveness, the responsiveness of the system when generating new data sets mainly 
depends on the complexity of the query that produces the respective data set, as well as on its output 
size (i.e., the query selectivity). We used the aforementioned ADS-B data set, to test the responsiveness 

of the system when confronted with a spatio-temporal constraint. The datAcron system can retrieve 

trajectory points which satisfy a constraint covering the 10% of the entire spatio-temporal space, in 2.5 
seconds. This response time is acceptable, given the large output size of the query. Operationally 10% 
is enough for most of the queries. 
 

Regarding Performance, the datAcron system scales gracefully, since by increasing four times the size 

of the spatio-temporal area constraint, the response time increases less than two times. More 
specifically, by selecting a spatio-temporal constraint which covers 10% of the entire spatio-temporal 
area, the system retrieves all trajectory points of that area, in 2.5 seconds, while for 40% spatio-
temporal size the system returns the results in 4.5 seconds. 
 
Regarding Accuracy, as detailed in the referenced paper, the significant differences between the 
features of the data subsets selected by the initial time mask and its inverse, indicate the presence of 
relationships between the data used for setting the query and the data to which the time mask was 
applied. 
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That assures that the final dataset contains at least all the user requested features in the time period 
queries. So, accuracy is 100% as there is no loss of information in this stage. 
 
Confidence in Validation Results 

The datAcron infrastructure supports retrieval of integrated data sets using multiple combinations of 

filtering criteria, primarily spatial and temporal constraints, but also other criteria related to contextual 
information.  
Accuracy and usability met all the specifications defined at D6.3 [7], only performance has not been 
evaluated from the point of view of extracting metrics from the WP4 implemented system. 
 

FP06 

The aim of this validation exercise is evaluating datAcron capabilities for clustering aircraft 

trajectories. As explained in D2.5 [3], three different clustering strategies have been designed and 
implemented: 
 

 Centralized semantic-aware (sub-)trajectory cluster analysis methods (Sections 3 and 4 at D2.5 
[3]). In detail, in these approaches we studied in depth novel trajectory clustering problems 
and we designed solutions for legacy computational technologies. This approach unveiled the 
steps where the computational bottleneck occurs, thus highlighting where to focus our 

research so as to solve efficiency and scalability problems coming from datAcron’s big data 

requirements. 
 

  (Whole-)trajectory clustering methodology (section 6 at D2.5 [3]), which transforms 
trajectories into representations that could utilize off-the-shelf clustering algorithms. The goal 
of this approach is on the one hand to provide first solutions for the whole-trajectory 
clustering problem and on the other hand to study the limitations of using off-the-shelf 
clustering algorithms for big trajectory data. 

 

 Distributed (sub-)trajectory clustering method (section 7 at D2.5 [3]), which utilizes the 
aforementioned distributed trajectory join method in order to cluster massive-scale datasets 
of trajectories. The goal of this approach, which is the upshot of our clustering methods, is to 
provide a hybrid solution for both the whole-trajectory as well as the sub-trajectory clustering 
problems in an efficient and scalable way. 

 
Regarding Usability, all the three different clustering strategies have been tested from the point of view 
of visual analytics and user experience. The purpose of the Visual Analysis approach is to combine 
algorithmic analysis with the human analyst’s insight and tacit knowledge in the face of incomplete or 
informal problem specifications and noisy, incomplete, or conflicting data. An extensive analysis form 
the point of view of visual analytics has been published in [16]. Additionally, the user experience has 
been documented in the following video: https://www.youtube.com/watch?v=pW4G28b5euM 
 
Regarding Accuracy, concerning WP2 and the accuracy of the performed clustering, since there is no 
ground truth available the validation has been performed using metrics that measure the quality of the 
clustering, or RMSE. 
In general, disregarding the clustering implementation, if we are using raw data or synopsis data, there 
is a high variability in the accuracy of the clustering depending of the number of clusters (k). 
The dataset that was used to perform this analysis contains all flights that took place between 
Barcelona and Madrid during April 2016. This dataset originates from the IFS radar provided by CRIDA 
and consists of 1396 trajectories (that correspond to flights) with a total of 909,644 records, where 
each record corresponds to a timestamped location. Furthermore, the synopses for this dataset were 
employed, which is comprised of 183,372 critical points. 
In the case of this specific route, the best accuracy is obtained with k=2, where the RMSE is 20.74421. 

https://www.youtube.com/watch?v=pW4G28b5euM
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No outliers where found so, from this point of view, the Distributed (sub-)trajectory clustering method 
meets the specifications given at D6.3 [7]. 
 
Regarding Performance, initial requirements assessed: “Time spent clustering trajectories should be 
always lower than time spent retrieving the set of trajectories individually or by group”. This is not true 
for the state of the art clustering methods since the complexity of clustering algorithms usually vary 
between O(n2) and O(nlogn). 

However, a big effort has been conducted in datAcron to mitigate this technical constraint. First by 

creating an architecture where the data analyst is querying a database instead of running the clustering 
algorithms directly (deeply explained at D2.5 [3]): 

 
Figure 16: Architecture of the time-aware sub-trajectory clustering module implemented in 
Hermes@PostgreSQL 

This architecture, also explained in the previously referenced paper, created a big boost in 
performance. 
 
At the same time, trying to meet the linearity specifications, that is trying to maintain linear the 
execution time when the dataset grows, the Distributed (sub-)trajectory clustering method, explained 
in D2.5 [3], shows great results, especially if we compare them to the state of the art algorithms. 
 

 
Figure 17: Execution time for FightAware dataset 

 
Confidence in Validation Results 
Values measured during the validation activities exceed the initial expectations in terms of usability and 
accuracy. 
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Performance of clustering algorithms as explained before is not uniform and the execution time need 
is never linear to the amount of data processed. None of the state of the art algorithms is able to 
perform better O(n2) and O(nlogn), however the Distributed (sub-)trajectory clustering  approach gets 
results in an acceptable range of  performance vs dataset size. 
 

FP07 

According to D6.3 [7] the FP07 scenario objective is to demonstrate how datAcron predictive analytics 

capability can help in trajectory forecasting. For a given flight plan, a forecasted trajectory is obtained 
and compared with the real one finally flown (Historical). 
The validation criteria defined in D6.3 [7] are: 

● Usability and responsiveness. 

● Performance. 

● Accuracy. 

 

FP07 scenario is the most important for Flight Planning use case, so the validation results include more 

details than in other scenarios and we feel are important. 

 

Regarding usability and responsiveness we can refer to other scenarios, since this one focus on the 

offline method of prediction and relies in the others for dataset preparation. 

 

Regarding performance, please refer to next scenario FP08. 

 

Regarding accuracy, the experimental setup for validating the proposed hybrid clustering/HMM 
approach is based on a selected set of flights between Madrid and Barcelona. More specifically, the 
flight plans (the latest submitted before departure), the IFS radar tracks, weather data (actual) and 
additional aircraft properties are included in the enriched “linked” FP/RT flights dataset from April 
2016. The specific pair of airports was selected as the one with the heaviest traffic on a monthly basis 
compared to any other airport pair in Spain. 
As a baseline, only one airport pair is considered here and each direction is modeled separately, as it 
involves different flight plans (reference waypoints) and takeoff/landing approaches. In operational 
mode, each direction and each pair of airports will be associated with a separate clustering/predictive 
model, in order to capture the fine details and the specific statistics of each case. Table 10 summarizes 
the dataset used in the experimental study. 
 

Element Description Comments 

Airport pairs 
(subsets) 

(a) LEBL → LEMD: 693 flights 

(b) LEMD → LEBL: 703 flights 

About 10% of the original dataset 
(772+760) flights) was excluded due to 
timestamp, linking or noise errors. 

Flight plans (FP) Latest submitted 

11-18 reference waypoints 

 

Actual route (RT) Reference waypoints from the full 
IFS radar track route, matched 
(closest) to the FP 

Waypoint matching was conducted only on 
the spatio-temporal basis, i.e., no 
semantics were considered. 

Weather (SW) Latest NOAA weather parameters 
estimated via interpolation upon 
each reference waypoint of FP, RT 

Parameters used: 

Wind speed, wind direction, temperature, 
humidity 

Other semantics 
(SW) 

Additional parameters used in the 
enrichment process 

Parameters used: 

Aircraft type, wake category (aircraft size), 
weekday 
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Table 12: Summary of the datasets used in the experimental study 

Clustering stage 
As described above, the first stage in the proposed approach is the clustering of the flights using a 
similarity metric that takes into account spatio-temporal as well as other data enriching the trajectory. 
Using the flights of each direction separately between Madrid and Barcelona, the enriched trajectories 
were clustered and the corresponding medoid of each cluster was identified. 
In clustering (stage-1), the parameters of the composite distance metric (see D2.4 [2]) were established 
after extensive experimentation and evaluation of the quality (size versus compactness) of the resulting 
clusters. More specifically, the spatio-temporal part was preferred over the enrichment data  part (𝜆 =
3

4
), equally-weighted spatial dimensions (𝑤1 =

1

3
) and time-invariant trajectory matching (𝑤2 = 0) were 

employed. These design choices for the distance function were specifically selected as a compromise 
between clustering compactness versus ease of visualization, in order for the standard prediction error 
metrics MAPE and RMSE to be easily interpreted in the 3-D spatial-only sense. The best clustering result 
for the purposes of FP07 includes a partitioning of 𝐶 = {255,228,138,75}, 𝐾 = 4 and was used as 
baseline throughout the experimental work. Next Figure illustrates the corresponding medoids for 
these four clusters. 
 

 

Figure 18: The medoids of the four main clusters (outliers excluded) in the enriched FT/RT dataset (enriched 
flight plans & route points). 

Predictive modeling stage 
According to the description of the proposed approach, the results from the clustering stage are used 
as input for the next stage, i.e., the setup and training of the corresponding HMMs. More specifically, 
the medoid of each cluster is used as the baseline for defining the states (reference waypoints) and the 
emissions (FP/RT deviations).  
Table 11 summarizes the results from the statistical significance analysis of the emissions model 
regarding the four main clusters (7 outliers excluded) of the experimental setup described above. For 
each cluster, the FP/RT deviations upon every reference waypoint over its members is used to produce 
a corresponding pdf and subsequently the means, sample standard deviations and confidence interval 
of the means are calculated, here for a significance level of a=0.1. The resulting per-waypoint prediction 
accuracy is characterized by the corresponding half-width confidence interval (HWCI), which is 
essentially the radius of the sphere around each reference waypoint, different for each one, through 
which member flights will pass with probability 1-α. Then, the HWCI statistics are calculated for the 
entire flight paths within each cluster, i.e., the means, confidence intervals of the means (same α) and 
the sample standard deviations, and the numbers are presented in Table 11, separately for each spatial 
dimension, in order to examine the accuracy and error sensitivity of the HMM per-cluster predictors 
against Latitude, Longitude and Altitude. The R estimate is the mean radius (in meters) of the sphere 
corresponding to the Lat/Lon/Alt confidence intervals of their HWCIs within each cluster over the 
minimum common length of the flights included. 
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cluster 

(k) 

|Ck| Lk HWCI mean: 

value (m) 

HWCI mean: confidence interval 

range (a=0.1) (m) 

HWCI mean: sample 

stdev (m) 

1 255 13 
Lat: 194.5 

Lon: 48.3 

Alt: 29.6 

Lat: 52.3 

Lon: 11.2 

Alt: 7.2 

Lat: 138. 9 

Lon: 29.9 

Alt: 19.2 

R = 208.5 R = 50.4 R = 133.9 

2 228 14 
Lat: 269.5 

Lon: 73.0 

Alt: 32.0 

Lat: 72.0 

Lon: 33.4 

Alt: 6.3 

Lat: 199.6 

Lon: 92.7 

Alt: 17.5 

R = 285.3 R = 77.5 R = 214.7 

3 138 15 
Lat: 440.1 

Lon: 112.8 

Alt: 48.7 

Lat: 138.1 

Lon: 40.2 

Alt: 9.1 

Lat: 397.8 

Lon: 115.8 

Alt: 26.2 

R = 460.9 R = 142.5 R = 410.4 

4 75 11 
Lat: 617.6 

Lon: 200.6 

Alt: 102.7 

Lat: 128.1 

Lon: 73.0 

Alt: 16.1 

Lat: 309.6 

Lon: 176.4 

Alt: 38.9 

R = 665.9 R = 141.0 R = 340.8 

Table 13: Summary of the emissions model per cluster (EDR metric, 4+1 clusters). HWCI = half-width 
confidence intervals for per-waypoint FP/RT deviations over the flights |Ck| in each cluster. The means here 
refer to the entire flight path within each cluster, i. 

In practice, these HWCI statistics can be translated as follows: for each reference waypoint of the flights 
in cluster k, there is 1-α probability (here 90%) that the FT/RT deviation in Lat/Lon/Alt will reside within 
the corresponding confidence interval of the mean (emission output) and the true 3-D distance of this 
deviation will be at most R (in meters). These estimations differ significantly between the reference 
waypoints, due to the fact that the first and last ones are very “strict” constraints as part of standard 
takeoff and landing procedures, while intermediate ones can be traversed more “loosely” with 
shortcuts if necessary, e.g. to save time lost in flight delays. Table 11 illustrates averages over entire 
flights, i.e., the general predictability of the flights within each cluster over their entire flight path (all 
Lk waypoints). In this sense, flights in cluster 1 can be predicted with accuracy of roughly: errk* = 208.5 
± 50.4/2 = 183...234 meters upon each reference waypoint of its submitted flight plan. In contrast, 
flights in the much smaller cluster 4 can be predicted with accuracy of roughly: errk* = 665.9 ± 141/2 = 
595...736 meters upon each reference waypoint of its submitted flight plan.  
It should be noted that the significance level a=0.1 has some but not very large effect in these 
confidence intervals in terms of the order of magnitude of this uncertainty. This is a one-tailed t-Student 
test, as we are interested in testing errors “at most” (equal or less) to a threshold and the half-width of 

the confidence interval:  ε𝑘 =
t𝛼∙s𝑘

√n𝑘
 , where, nk is the size of cluster k, sk is the sample σk of the FP/RT 

deviations and tα is the corresponding t-Student value at significance level a, all calculated separately 
for each reference waypoint. For any n>30, α=0.1 (p=90%) corresponds to ta=1.282, α=0.05 (p=95%) 
corresponds to ta=1.645 and α=0.01 (p=99%) corresponds to ta=2.326. In other words, even at very 
high confidence levels (p=99%) the corresponding interval, i.e., “uncertainty” of the maximum-
likelihood estimation (mean) of the FP/RT deviations (HMM emissions), is at most 81% wider than the 
values presented in Table 11, which are already adequately tight. For example, cluster 4 with the 
smallest size (75) is presented here with HWCI mean over all waypoints at 0.67 km with probability 
p=90%; this is expected to become roughly 1.21 km with probability p=99%, which is actually the worst-
case and stricter error bound for this model setup. 
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Next 3 Figures illustrate the per-waypoint means and confidence intervals of the FP/RT deviations for 
cluster 1, i.e., the distances between the latest submitted flight plan and the corresponding real route 
flown, for all three dimensions (Lat, Lon, Alt). The height of each bounding box is directly linked to the 
uncertainty associated with producing the maximum-likelihood FP/RT deviation. As expected, most of 
the waypoints just after takeoff and just before landing have the tightest confidence intervals, i.e., the 
lowest levels of uncertainty, while sharp turns are the most difficult to predict (see cluster plots above). 
Figure 22 illustrates the mean radius of the inclusion sphere for cluster 1, i.e., the uncertainty in the 3-
D deviations between flight plans and actual routes flown. Finally, Figure 23 illustrates the distributions 
of the confidence intervals (ranges) of Lat/Lon/Alt and 3-D radius, providing an overview of the 
statistical uncertainty in the FP/RT predictions in cluster 1. These are the graphical representations of 
the distributions described in Table 13, but here in standard box plot notation, i.e., with median, 
quartiles and extremes instead of mean and standard deviation. The height of each box, i.e., the size 
two central quartiles, is directly linked to the statistical uncertainty in predicting each dimension of the 
FP/RT deviations within the cluster. 
 

 

Figure 19 : Mean and confidence interval of the FP/RT Latitude deviations (in meters) within cluster 1 over the 
minimum common length of flight plans included. 
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Figure 20: Mean and confidence interval of the FP/RT Longitude deviations (in meters) within cluster 1 over the 
minimum common length of flight plans included. 

 

 

Figure 21: Mean and confidence interval of the FP/RT Altitude deviations (in meters) within cluster 1 over the 
minimum common length of flight plans included. 
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Figure 22: Mean radius (in meters) of the sphere corresponding to the Lat/Lon/Alt confidence intervals of the 
FP/RT deviations (in meters) within cluster 1 over the minimum common length of flight plans included. 

 

 

Figure 23: Distributions of confidence intervals (ranges) of Lat/Lon/Alt and radius of inclusion sphere (in meters) 
within cluster 1 over the minimum common length of flight plans included. 

 

More plots, similar to these Figures for cluster 1, are included in D2.4 [2] for all the four main clusters. 
As an example of prediction error tracking along the sequence of waypoints, Figure 24  presents the 
Mean Absolute Prediction Error (MAPE) and Root Mean Squared Error (RMSE) for the LR(4) model 
(stage-2), trained on the same 4-cluster partitioning of the data (stage-1). See D2.4 [2] for model details. 
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Figure 24: Example MAPE and RMSE (m) plots of LR predictor (stage-2) along the waypoints. 

For CART regressors the training was implemented with both node merging and tree post-pruning 
enabled (parent size 10), using Mean Squared Error (MSE) as the node splitting criterion. 
Next Tables present the best performances for all stage-2 predictor models using the same set of 696 
flights (excluding outliers), non-clustered and clustered (𝐾=4), respectively. 

Model 𝑹𝒌: 𝑳𝒂𝒕 𝑹𝒌: 𝑳𝒐𝒏 𝑹𝒌: 𝑨𝒍𝒕 𝑹𝒌: 𝟑𝑫 

HMM 3986.0 1072.3 587.3 4169.3 

LR(1) 3660.1 999.3 528.3 3830.7 

LR(3) 3090.7 741.8 391.0 3202.4 

LR(4) 3074.3 736.7 380.8 3184.2 

CART 2830.2 1396.9 316.9 3172.0 

Table 14: Prediction accuracies in RMSE (m), non-clustered dataset. 

Model 𝑹𝒌: 𝑳𝒂𝒕 𝑹𝒌: 𝑳𝒐𝒏 𝑹𝒌: 𝑨𝒍𝒕 𝑹𝒌: 𝟑𝑫 

HMM 3154.6 847.3 418.9 3294.6 

LR(1) 3047.3 806.7 403.9 3179.9 

LR(3) 2736.7 662.4 330.8 2837.4 

LR(4) 2697.8 652.6 321.5 2796.4 

CART 2661.4 1673.0 289.3 3377.1 

Table 15: Prediction accuracies in RMSE (m), clustered dataset (K=4). 

Finally, Figure 25 presents the summary of the performance of all stage-2 predictor models for non-
clustered and clustered dataset. 
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Figure 25: Summary of the performance of all stage-2 predictor models for non-clustered and clustered dataset. 

 

Confidence in Validation Results 
The proposed approach was designed from the start as light-weight, fully parallelizable and compatible 
with distributed computing platforms for Big data real-world applications. The results presented in 
Table 13, as well as the per-waypoint confidence interval plots in companion figures, demonstrate the 
robustness and the statistical significance of the hybrid clustering/predictive modeling proposed here. 
This multi-stage approach provides a combined scalability improvement factor of two orders of 
magnitude over the non-clustered full-resolution IFS data (see D2.4 [2] for details), provided that there 
will be at least two clusters (dataset splits) produced in the first stage. 
The results presented in the previous section is only one realization of this proposed hybrid 
clustering/predictors approach, here for four main clusters and the EDR similarity metric. Similar setups 
were investigated with more clusters, specifically up to 9-10, in order to get more dataset splits in the 
first stage but at the same time keep all the cluster sizes to a statistically significant level of at least 30 
members or more. The results produced in these cases were almost identical with the setup presented 
in detail above, i.e., more compact but smaller clusters. More specifically, the confidence intervals tend 
to become tighter due to increased cluster compactness, but at the same time expand due to smaller 
sample sizes. Thus, the combined effect is to produce similar error bounds as the ones presented here 
for four clusters. This means that the prediction accuracy of the proposed method does not seem to be 
affected significantly by the granularity of the clustering stage, which is a matter of great interest if the 
clustering itself can be configured independently with regard to other important factors (training time, 
lookup time, etc.). 
The use of flight plans, specifically the use of waypoints as reference points for designing independent 
predictors for each flight plan, essentially downscales the original FSTP problem to a much smaller non-
uniform graph-based grid. In the case study presented in the experimental work, i.e., a roughly one-
hour flight between Madrid and Barcelona, this translates to reducing the 680-730 data points of the 
raw IFS radar track for each flight to only 11-18 waypoints of a typical flight plan for this route. 
Additionally, the clustering stage partitions the input space into smaller, more compact groups of 
trajectories and at the same time incorporates the enrichment part into this process, so that the 
predictive models that are to be trained subsequently can be designed in much smaller dimensionality, 
even the 3-D spatial-only if necessary. These three aspects, i.e., independent per-waypoint model 
training and dimensionality reduction & input space partitioning via clustering, constitute this proposed 
approach inherently parallelizable and highly scalable to very large volumes and rates of data. 
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FP08 

According to D6.3 [7], the FP08 scenario objective is to demonstrate how datAcron predictive 

analytics capability can help in trajectory forecasting. For a reduced set of flight plan fields, the airline 

schedule, a forecasted trajectory will be obtained and compared with the real one finally flown 

(Historical). The main difference with previous scenario is that in this case there is still not flight plan 

available, just the schedule, destination and departure. 

 
The validation criteria defined in D6.3 [7] are: 

● Performance. 

● Accuracy. 

 

Regarding performance, in these experiments we measure throughput, i.e., the amount of input 

messages (points) that are processed by the Future Location Prediction – Longterm (FLP-L) module at 

each second concerning the entire operator pipeline. We also measure the average latency of incoming 

messages, i.e., the average time that a message remains in the operator pipeline since its admission 

until we predicted the next position of an object. An important aspect that we want to examine is how 

stateful streaming affects the performance of the module and if simpler MapReduce reduce tasks 

would be for efficient. In general, low latencies are important in order to deliver meaningful and timely 

results in real-time scenarios. In our experiments, we have the standard 167ms block interval and a 

batch interval of 10000 seconds, hence there are 60 Kafka partitions; input rate is 6,000 records per 

second; cores per executor are 5; and each executor has 4GB of memory available. 

 

 

Figure 26: Performance metrics for 25·106 points, 6·103 points/sec batch interval 10 sec, 9 workers and 60 
partitions 
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Figure 27: Delay time versus number of workers 

Based on the optimal Spark configuration described in Figure 26, the total delay is almost entirely the 

processing time, which asymptotically stabilizes at around 5 sec. This essentially translates to 60,000 

Kafka messages (points) per 10 sec or 6,000 points/sec, which corresponds to 8-minute look-ahead 

window. In other words, with an average sampling rate of 5 sec for each aircraft (IFS), this system 

configuration of the FLP-L module can accommodate up to 30,000 aircrafts with 5-sec update and 8-

minute look-ahead predictions.  

Finally, from Figure 27 it is clear that using all the workers available in the platform (9 in our case), the 

average processing time for each task becomes optimal. Furthermore, enabling hyper-threading may 

be an option in the platform, but without any significant improvement in the performance. 

 

Regarding accuracy, in this case (schedule-based prediction), no flight plan is provided; hence, the 

predictive modeling is based solely on the clustering stage as described above for FP07. 

More specifically, in each cluster the medoid represents the minimum-error or the maximum-likelihood 
“expected” flight route that an aircraft will go through when travelling from the specific departure to 
the specific destination. 
Based on this medoid-based approach for the predictions, next Tables illustrate the RMSE (in meters) 
for various clustering configurations. The “wake category” property of the aircrafts was statistically 
identified as significant for producing proper and more compact clusters, hence the two main options 
“Heavy” and “Medium” in this dataset was treated separately. The first column contains the cluster size 
(number of members), columns 2-4 the per-dimension RMSE and columns 5-6 the 3-D and 2-D 
(horizontal plane) RMSE, respectively. The last row (in bold) contains the sum of all cluster members in 
column 1 and the weighted average of the corresponding RMSE values for the entire subset. 
 

cluster members RMSELat RMSELon RMSEAlt RMSE3D RMSE2D 

27 10396,9 15776,6 656,9 18905,8 18894,4 

45 22553,4 30746,1 1027,3 38144,9 38131,1 

72 17994,7 25132,6 888,4 30930,3 30917,3 

Table 16: Madrid/Barcelona, April 2016, IFS raw data, wake category “Heavy” (2 clusters) 

cluster members RMSELat RMSELon RMSEAlt RMSE3D RMSE2D 
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397 12850,6 25720,8 951,9 28768,1 28752,3 

220 11732,8 19968,4 901,8 23177,8 23160,3 

617 12452,1 23669,7 934,1 26774,8 26758,4 

Table 17: Madrid/Barcelona, April 2016, IFS raw data, wake category “Medium” (2 clusters) 

cluster members RMSELat RMSELon RMSEAlt RMSE3D RMSE2D 

102 11973,0 15916,9 814,9 19934,0 19917,3 

72 13829,3 21746,0 898,1 25786,5 25770,9 

58 14124,0 18016,3 948,3 22912,3 22892,6 

21 12308,0 14140,7 855,0 18766,4 18746,9 

59 12742,2 28257,4 1097,2 31016,9 30997,5 

119 9326,3 16829,6 736,1 19255,0 19241,0 

173 11270,9 15067,3 766,8 18832,0 18816,4 

9 9836,4 10979,9 709,9 14758,6 14741,6 

613 11736,7 17792,0 835,4 21411,1 21394,7 

Table 18: Madrid/Barcelona, April 2016, IFS raw data, wake category “Medium” (8 clusters) 

 
Confidence in Validation Results 
As it can be seen from the results, the lack of complete flight plans in schedule-based prediction (FP08) 
leads to roughly an order of magnitude larger prediction errors compared to the multi-stage approach 
presented for FP07. This is expected, as there are no reference points or “constraints” for the search 
space when training the predictive models. 
Additionally, the clustering in this case is based on spatial-only information, i.e., no weather 
enrichments as in FP07 (only wake category is considered additionally), and uses the full-resolution IFS 
trajectory data instead of only FP/RT waypoints. These changes are necessary in order to obtain more 
compact and spatially-focused clusters, instead of semantic-aware N-dimensional clusters. This results 
in a more balanced distribution of errors between the two horizontal dimensions (Lat/Lon), instead of 
biased towards Lat as the results in FP07 show. Additionally, the Alt dimension produces minimal error 
which is marginally significant in 2-D and 3-D RMSE calculations, as it remains below 1 km in all cases. 
Finally, similarly to stage-1 described for in FP07, the clustering process described here is inherently 
parallelizable and already deployed in a distributed platform, despite the fact that it remains an offline 
module. The execution time for the specific training dataset (one month for one pair of airports) 
remains in the order of 2 hours; the total number of airport links in a wide-area airspace like Spain’s is 
strictly bounded and with much fewer flights per month compared to the Madrid/Barcelona pair, which 
was selected specifically for being the busiest route; and periodic trends in flight patterns in the same 
routes are expected to be no more frequent than monthly trends. Therefore, it is expected that all the 
corresponding clustering can be easily re-trained offline in a monthly or even weekly basis.  
Using the current implementation and distributed platform, this training procedure would require a 
total execution time in the order of a few hours. Then, the callback and prediction procedure for any 
flight given a specific departure & destination is simply the lookup of the corresponding clustering result 
and the retrieval of the best-match (e.g. wake category) as the maximum-likelihood route. 
 

FP09 

This scenario was removed from the Validation plan. Experiment FP09 was postponed for future 
research, the reason is this scenario is just equal to FP07 but using real time information, and the 
changes needed to manage the continuous new information may require too much changes from the 
architectures to the algorithms, so it was no realistic to address that in the same project. We focused 
on good results in FP07 and just then the evolution to real-time should start. 
 
Confidence in Validation Results 
This scenario was removed from the Validation plan. Experiment FP09 was postponed for future 
research. 
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FP10 

In this case we are evaluating the similarity metrics used in datAcron to compare trajectories 

generated in previous scenarios.  
WP4 has introduced a general conceptual framework for comparative analysis of trajectories and an 
analytical procedure, which consists of (1) finding corresponding points in pairs of trajectories, (2) 
computation of pairwise difference measures, and (3) interactive visual analysis of the distributions of 
the differences with respect to space, time, and set of moving objects, trajectory structures, and spatio-
temporal context. A detailed description of the framework is published in [17]: 
The core of the framework is the point matching method that is supplemented by interactive visual 
interfaces enabling the analyst to view and explore the results of point matching. 
 
Confidence in Validation Results 
WP4 delivered novel techniques to compare trajectories that exceed by far the expectations of using 
RMSE to compare trajectories. 
 
 

 
Figure 28: Figure from "Analysis of Flight Variability: a Systematic Approach" 
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4. CONCLUSIONS AND RECOMMENDATIONS 

DatAcron project has assessed the use of big data analytics in aviation domain in both trajectory 

prediction and flow management event detection. The main conclusions drawn from the validation in 
the aviation field are: 
 

 Results on flow management scenarios are providing a promising initial step, but not mature 
enough yet to consider industrialization or deployment. Regulations and hotspots prediction 
is not reliable enough for operational purposes, mainly due to a low accuracy rate in sector 
configuration predictions. Regulation and imbalance prediction is totally conditioned by this 
sector configuration prediction (as it constitutes the scenario where these discrete events 
occur), so if the forecasted sector configuration is not correct, the following step regarding 
imbalance and regulation prediction will obviously be incorrect (even though the sector 
configuration were correct, regulation/hotspot forecasting present its own complexities so 
might still be incorrect). A conclusion is that sector configuration prediction is a problem more 
complex for modelling than expected, where several possible options are available for each 
ACC: if the incorrect sectors are predicted, imbalances and regulations are calculated on these 
incorrect sectors and therefore, there is no correct prediction. This conditions the results 
provided in terms of high detection rates, while producing promising features innovative in 
aviation domain. 

 Regulation and imbalance prediction relies on machine learning performed on a set of 
classifiers that should be refined in order to get better results. At the moment, results below 
expectations mainly due to the lack of specific classifiers/factors affecting configuration 
assignment and regulation setting, which lead to inaccurate predictions. A key conclusion is 
that this problem should be treated as and standalone problem instead of a secondary step of 
sector configuration, as they may require different (even diverging) strategies. Further 
research on this event detection is required to successfully tackle these scenarios. 

 Additionally, results on flow management may be biased by the dataset used to perform 
machine learning. Only one month of data has been used to train the algorithm while three 
weeks are used for validation activity. This limitation has proven to be inefficient and the way 
forward would suggest considering a whole year of data (available in the dataset provided), as 
the single month of training data may not contain all possible cases or circumstances to make 
a comprehensive training of the algorithm. 

 datAcron prototype is capable to deal with real datasets coming from production systems in 

the aviation domain. This was a challenging requirement due to both the variety of the 
datasets and the volume of some of them (as can be appreciated in deliverable D6.2, Aviation 
data preparation and curation [6]). In fact, during the validation activities, the limitations 

regarding volumes has come from the characteristics of the “non- datAcron” tools needed 

which imposed limits to the volumes to manage, this is natural, since if there were available 

systems to validate datAcron at scale, we’ll not need to research for a system like datAcron. 

It’s important to mention too the effort done by the researchers unfamiliar with the aviation 
domain to grasp the datasets delivered and make sense of all of them. 

 The different levels of quality of the available datasets have been a challenge, in this sense the 
validation has discovered the quality of the datasets can impact a lot on the usability of the 
prototype and this shows how the research should advance to deal with this problem, since 
the real datasets are not always of the best quality. In particular compression delivers benefits 
at the cost of quality, and when the quality is limited from the beginning by the raw data (i.e. 

incomplete trajectories) the compression losses to much details. DatAcron technology 

however can adjust the level of compression to achieve the desired quality. The quality 
required for the datasets for event detection and discovery training as proven to be very high 
too, making difficult to work with some of the most complex events initially identified in 
deliverable D6.1, Aviation use case detailed definition [5]. 

 From the project management point of view, the delivery very soon in the project of the 
experiments designed for the validation has proven to have some drawbacks. It seemed a good 
idea to have soon this visibility of what was intended to do as validation, and the task was 
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accomplished as planned, but the evolution of the project has diverted from what was just 
envisioned in the early stage, this has made some scenarios to not be reasonable to use (i.e. 
FP09) or to need to adapt them to the reality of the prototype. However the experiments that 
finally have been done has serve well to the main objective of the validation: to check that the 
developments achieved are not just good from the scientific point of view, but useful too in 
specific industrial scenarios. Another lesson learnt is how easy the extra effort needed to 
complete the scientific results in the prototype has precluded a “product oriented” 
development as presumed in validation plan. In this sense the project assumed the pressure 
to be “near to the business” and in fact the results are useful and promising for product 
development but the prototype cannot be treated as a product, it would be simply not realistic 
to think you can advance the science and produce a final product at the same time. 

 

In view of the above DatAcron has paved the way to further research in big data analytics in the 

aviation domain and shows the areas that need further refinement in this field. Up to now, in the 

aviation domain there are no tools with prediction capabilities as the ones introduced by datAcron, 

and there is a promising future ahead. 
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