Projects

While data-driven methods aim to build models for trajectory planning and conflicts resolution, incorporating stakeholders’ interests and preferences, the multi-agent reinforcement learning (MARL) approach aims to address complexity phenomena due to traffic and resolve conflicts between multiple trajectories, simultaneously. Towards that goal we aim to formulate the problem as a Markov Decision Making Process, i.e. MDP, and apply multi-agent reinforcement learning (MARL) methods to resolve it.

Continue reading