DeepHAC: Advancing Human-Agent Collaboration

The overall goal of DeepHAC is to  advance Human-Agents Collaboration (HAC) building explainable DRL methods that enable agents to perform tasks in collaboration with humans with respect to human preferences, constraints and objectives, promoting safety and efficacy in performing collaborative tasks. The approach proposed by DeepHAC relies on three main pillars:
  1. Learning collaborative policies aligned with human preferences, constraints and objectives.
  2. Making policies explainable and transparent, and
  3. Learning to act safely and effectively in safety-critical settings.

Duration

 2024 – 2026

Objectives

The specific objectives of the project are the following:
Develop DRL methods for effective Human-Agent collaboration considering human preferences, constraints, and objectives. 
Develop explainable DRL methods for Human-Agent Collaboration, able to align policies to human preferences constraints, and objectives, promoting safety in executing tasks. 
Evaluate and validate how the proposed methods balance between safety and efficiency in executing tasks in various settings. 

Leave a Reply