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Spatial-keyword queries are important for a wide range of applications that retrieve data based on a combination of keyword search

and spatial constraints. However, efficient processing of spatial-keyword queries is not a trivial task because the combination of textual

and spatial data results in a high-dimensional representation that is challenging to index effectively. To address this problem, in this

paper, we propose a novel indexing scheme for efficient support of spatial-keyword range queries. At the heart of our approach lies a

carefully-designed mapping of spatio-textual data to a two-dimensional (2D) space that produces compact partitions of spatio-textual

data. In turn, the mapped 2D data can be indexed effectively by traditional spatial data structures, such as an R-tree. We propose

bounds, theoretically proven for correctness, that lead to the design of a filter-and-refine algorithm that prunes the search space

effectively. In this way, our approach for spatial-keyword range queries is readily applicable to any database system that provides

spatial support. In our experimental evaluation, we demonstrate how our algorithm can be implemented over PostgreSQL and exploit

its underlying spatial index provided by PostGIS, in order to process spatial-keyword range queries efficiently. Moreover, we show

that our solution outperforms different competitor approaches.
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1 INTRODUCTION

During the last decade, the combination of GPS-enabled mobile devices, mobile internet and social networking has

led to the generation of huge spatio-textual data sets, where data objects contain both location information as well as

textual descriptions. Twitter and Flickr are prominent examples of social networking applications that collect geotagged

content daily, in the form of short messages and photos respectively. On the other hand, the amount of geotagged

content on the Web has also increased dramatically. For example, points-of-interest (e.g., hotels, restaurants, etc.) are

geotagged and some studies [8] have reported that approximately 20% of all Web queries also have location constraints,
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i.e., also refer to the location of a geotagged web page. As a result, scalable management and querying of spatio-textual

data has attracted a lot of attention recently [3, 4, 6, 17].

In order to support efficient retrieval of spatio-textual data, spatial-keyword queries are used and several efficient

query processing algorithms have been proposed. In this work, we focus on spatial-keyword range queries, where given a

query 𝑞 that consists of a location (𝑞.𝑥, 𝑞.𝑦) and a set of keywords 𝑄 , the objective is to retrieve all spatio-textual objects

within distance 𝑟 from 𝑞 and having keyword set similarity above a user-specified threshold 𝜏 . This query type offers more

flexibility than boolean spatial-keyword range queries [5, 7, 13, 15] that impose exact matching on the keywords that

describe each object. Nevertheless, efficient processing of spatial-keyword queries requires the use of specialized access

methods [8, 9, 14, 16, 18, 20, 22] that combine spatial and text indexing techniques in a joint index, a challenging topic

due to the high dimensionality of spatio-textual representations. Unfortunately, these index structures typically have

high memory or disk requirements due to the integration of spatial with textual information, and moreover they are

not supported in existing database management systems.

Motivated by this limitation, in this work, we propose a novel indexing method for spatio-textual data that supports

efficient processing of spatial-keyword range queries. In contrast to existing approaches that devise new index structures,

we propose a carefully-designed mapping of spatio-textual data to a two-dimensional (2D) space, where one dimension is

used to represent spatial distance and the other textual similarity. Our work is inspired by the iDistance technique [11, 21]

from spatial databases that indexes the distance rather than the actual location of objects. One of the main technical

challenges addressed in this paper is how to map the keyword descriptions to 1D values in a way that supports efficient

retrieval. Intuitively, the proposed mapping generates data partitions in the 2D space that contain objects with small

distances and common keywords, thus preserving data locality. As a result, any traditional spatial index, such as an

R-tree, can be used to index the transformed data, thus alleviating the need for specialized index structures. Furthermore,

our approach is directly applicable to existing database management systems that provide built-in 2D indexes, such as

PostGIS, MySQL, Oracle, etc.

Capitalizing on the proposed mapping, we propose a novel method for processing spatial-keyword range queries.

First, we prove the existence of lower and upper bounds for search, which can be exploited in order to derive an efficient

processing algorithm that prunes the search space. Then, we present a filter-and-refinement algorithm, called ST2D, for

spatial-keyword range queries that issues a set of window queries in the transformed 2D space and is provably correct.

Moreover, we present an improved version, called PPR_ST2D, which uses proximity-aware partition reordering in order

to process a single window query and return the correct result set. We implement our algorithms on top of PostgreSQL

to show the feasibility of our approach, and we show the gain in terms of performance. Also, in our experiments, we

compare against other mappings for spatio-textual data, such as [15] that generates 1D values, and show the benefits of

our approach.

In brief, we make the following contributions in this paper:

• We propose a novel method that transforms spatio-textual object to points in a 2D space, which can be effectively

indexed using traditional spatial access methods.

• We provide appropriate search bounds for spatial-keyword range queries in the transformed space, in order to

prune the search space and avoid processing unnecessary data objects, and prove the correctness.

• We develop an algorithm (ST2D) for query processing of spatial-keyword range queries in the transformed space

using multiple window queries, as well as an extension (PPR_ST2D) that improves data locality in the spatial

dimension and requires a single window query.
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Symbol Description
𝐷 Data set of spatio-textual objects

𝑝 ∈ 𝐷 Spatio-textual object, e.g., 𝑝 = {𝑝.𝑥, 𝑝.𝑦, 𝑃}
𝑞 Query object 𝑞 = {𝑞.𝑥, 𝑞.𝑦,𝑄}
𝑃,𝑄 Sets of keywords for object 𝑝, 𝑞 (resp.)

𝑟 Distance threshold

𝜏 Textual similarity threshold

𝐶𝑖 (𝐾𝑖 , 𝑟𝑖 ) Spatial cluster with centroid 𝐾𝑖 and radius 𝑟𝑖
𝑉 = {𝑡1, 𝑡2, . . . , 𝑡 |𝑉 |} Vocabulary of keywords in 𝐷

𝑉𝑖 ,𝑉𝑗 Disjoint subsets of 𝑉

𝑐, 𝑐 ′ Constants used by iDistance

|𝐶 | Number of spatial partitions

𝑘 Number of text partitions

Table 1. Table of symbols.

• We demonstrate the efficiency of our algorithms, implemented in PostgreSQL, in comparison with suitable

competitors using two real-life data sets.

The rest of this paper is structured as follows: Section 2 provides an overview of our approach. Then, in Section 3,

we describe the mapping scheme which enables representing spatio-textual data in a 2D space. Section 4 presents the

query processing algorithm ST2D, together with appropriate bounds for the search space that guarantee correctness.

Section 5 presents an extension called PPR_ST2D that improves data locality in the spatial dimension. Section 6 reports

our experimental evaluation, while Section 7 describes the related work. Finally, we conclude the paper and sketch

future research directions in Section 8.

2 OVERVIEW

Consider a data set 𝐷 of spatio-textual data objects, where each object 𝑝 is associated with a spatial location (𝑝.𝑥, 𝑝.𝑦) as
well as a set of keywords (tags) denoted with 𝑃 . We use capital letters (𝑃,𝑄) to denote the keyword sets associated with

an object (𝑝, 𝑞). Given a query 𝑞 that consists of a location (𝑞.𝑥, 𝑞.𝑦) and a set of keywords 𝑄 , the spatial-keyword range

query retrieves all objects within distance 𝑟 and having keyword set similarity above 𝜏 , as defined in the following.

Definition 2.1. (Spatial-keyword range query): Given a query point 𝑞, a spatial range 𝑟 , a set of query keywords 𝑄 ,

and a textual similarity threshold 𝜏 , the spatial-keyword range query retrieves all spatio-textual objects 𝑝 ∈ 𝐷 , such
that: dist(𝑝, 𝑞) ≤ 𝑟 and sim(𝑃,𝑄) ≥ 𝜏 .

In this work, we use the Euclidean distance function for the spatial domain, and we use the Jaccard similarity for the

textual set similarity. Other distance functions are supported in a straightforward way. However, extending our work

for other text similarity functions is left for future work. Table 1 provides the main symbols used in this paper.

Our approach maps the given data objects to data points in a transformed 2D space. The problem is challenging

due to the high dimensionality of the original space where data objects are represented, and this is mainly due to the

presence of textual information. Figure 1 presents a graphical overview of our approach, with the data set 𝐷 depicted

on the left, whereas the transformed 2D space is shown on the right. In summary, we map the location information in

one dimension (horizontal axis), and the textual information in another dimension (vertical axis). Essentially, in the

transformed 2D space, the objects form spatial partitions based on their pairwise distances, as well as textual partitions
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Fig. 1. Overview of mapping approach.

(in the example {𝑡1, 𝑡2} and {𝑡3, 𝑡4, 𝑡5}) based on grouping together subsets of frequently co-occurring keywords. While

each object belongs to a single spatial partition, it may be assigned to multiple textual partitions. For example, objects

𝑝1, 𝑝2 and 𝑝3 are assigned to the same spatial partition because they form a spatial cluster in the original space. On the

other hand, objects 𝑝3, 𝑝4 and 𝑝9 are duplicated to both textual partitions depicted in Figure 1, because they contain

keywords from both textual partitions. The technical details on how this mapping is performed are presented in the

next section.

After having obtained the transformed data set, we propose a query processing algorithm that operates on the

transformed data and prunes the search space using appropriate bounds, in order to retrieve the exact result set. For this

purpose, we follow a filter-and-refine approach that operates in the transformed space. For the filtering step, we present

a technique that transforms a spatial-keyword range query to a set of 2D window queries in the transformed space, in a

way that it is guaranteed that the correct result is going to be retrieved if these rectangular areas are searched. In the

refinement step, we check whether the data objects present in these areas are truly query results.

Our proposed approach has two main advantages. First, the data in the transformed space can be indexed by any

traditional access method designed for 2D and does not need any specialized index for spatio-textual data. Many

commercial systems support indexing of 2D data, such as Postgres or MySQL. Secondly, our transformation also

partitions the data based on their similarity so that the partitions can be used for parallel query processing in big data

frameworks, such as Hadoop or Spark.

In the following, we present the mapping technique for spatio-textual data to 2D values (Section 3), the query

processing algorithm (Section 4), as well as an extension (Section 5).

3 DATA MAPPING

Our objective is to transform spatio-textual data objects to data points in a two-dimensional (2D) space, which can

be indexed using traditional 2D access methods. To this end, the spatial information and the textual information are

mapped to two one-dimensional (1D) values, respectively.

Our approach is based on iDistance [11, 21], an indexing method for similarity search, with main rationale to index

the distance between points, instead of their locations. However, iDistance has been proposed for multi-dimensional

numeric data and is not straightforward how to generalize for spatio-textual data. In the following, we describe briefly

the iDistance mapping for spatial data (Section 3.1) and then we present our adaptation that makes it applicable for

textual data (Section 3.2).
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3.1 Mapping the Spatial Information

As already mentioned, in order to handle the spatial dimensions, we employ the iDistance technique [11, 21]. Consider a

partitioning of the data space into clusters, and each cluster 𝐶𝑖 is represented by a reference object 𝐾𝑖 (e.g., its centroid)

and a radius 𝑟𝑖 , which is the distance of the farthest point assigned to 𝐶𝑖 from 𝐾𝑖 . Any clustering algorithm can be used

for the partitioning of the data points. Thus, each point is assigned to the nearest cluster center and mapped to a 1D

value according to the distance to its cluster’s reference object. The main idea is that 1D values of points that belong

to different clusters should be assigned to different 1D ranges, thus a (large enough) constant 𝑐 is used to separate

individual clusters and the iDistance value for an object 𝑝 ∈ 𝐶𝑖 is defined as:

iDist(𝑝) = 𝑖 · 𝑐 + dist(𝐾𝑖 , 𝑝) (1)

Expecting that 𝑐 is large enough, all objects in cluster 𝐶𝑖 are mapped to the interval [𝑖 · 𝑐, (𝑖 + 1) · 𝑐]. Additionally
to the 1D values, the cluster centroid 𝐾𝑖 and the radius 𝑟𝑖 of each cluster are maintained, in order to facilitate query

processing.

Fig. 2. Example of iDistance.

Practically, iDistance transforms the problem of spatial range search to an interval search problem as follows. For a

spatial range query, defined by a location 𝑞 and a radius 𝑟 , each cluster𝐶𝑖 that satisfies the inequality dist(𝐾𝑖 , 𝑞) −𝑟 ≤ 𝑟𝑖1

must be visited, as it may contain points within distance 𝑟 from 𝑞. For each such cluster𝐶𝑖 , an interval search is initiated

on: I𝑖 = [𝑙𝑜𝑤,ℎ𝑖𝑔ℎ], where:
I𝑖 .𝑙𝑜𝑤 = 𝑖 · 𝑐 +min{dist(𝐾𝑖 , 𝑞) − 𝑟, 0}

I𝑖 .ℎ𝑖𝑔ℎ = 𝑖 · 𝑐 +max{dist(𝐾𝑖 , 𝑞) + 𝑟, 𝑟𝑖 }

The data points whose iDistance values belong to the interval I𝑖 are retrieved. Note that these data objects belong
to the cluster 𝐶𝑖 . For the retrieved points 𝑝𝑖 the actual distance to the query point is evaluated and thereafter, if the

inequality dist(𝑝𝑖 , 𝑞) ≤ 𝑟 holds, 𝑝𝑖 is added to the result set.

Example 3.1. Figure 2 shows a range query and two intersecting clusters 𝐶1 and 𝐶2. The points belonging to cluster

𝐶𝑖 are mapped to the interval [𝑖 · 𝑐, (𝑖 + 1) · 𝑐], using a large enough value of 𝑐 , so that the respective intervals are

disjoint. Since the depicted range query intersects with both𝐶1 and𝐶2, two 1D intervals need to be searched. These two

intervals I1 and I2 are depicted with bold lines on the axis representing the mapped (iDistance) values in the 1D space.

1
Henceforth also mentioned as intersection of the range query (𝑞, 𝑟 ) and the cluster𝐶𝑖 .
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3.2 Mapping the Textual Information

Let 𝑉 denote the vocabulary of the data set, i.e., 𝑉 = {𝑡1, 𝑡2, . . . , 𝑡 |𝑉 |}, where 𝑡𝑖 represents a keyword of the vocabulary.

Our objective is to partition 𝑉 in 𝑘 disjoint subsets of keywords. The way to partition 𝑉 is orthogonal to the proposed

approach. A naive approach would be to randomly create 𝑘 disjoint subsets of𝑉 , whose union makes𝑉 , i.e.,𝑉𝑖 ∩𝑉𝑗 = ∅
and

⋃
𝑉𝑖 = 𝑉 . Ideally, we would like to partition 𝑉 in such a way that there exists no data object 𝑝 in the data set that

contains keywords from more than one subset 𝑉𝑖 . This is important because if a data object belongs to more than one

partitions, then the data object needs to be replicated. In the following, we describe a keyword partitioning approach

that minimizes the overlap of keyword sets.

3.2.1 Generating the Textual Partitions. In order to capture the co-occurrence of keywords in spatio-textual objects, we

build the keyword co-occurrence graph. Then, we apply a graph partitioning algorithm in order to generate the desired

subsets of keywords {𝑉1,𝑉2, . . . ,𝑉𝑘 }. These can be considered as the textual partitions of the data set.

The keyword co-occurrence graph is an undirected, weighted graph that contains as vertices the keywords from the

vocabulary𝑉 . An edge between two keywords (vertices) is added if these keywords co-occur in at least one spatio-textual

object. The weight of an edge is set equal to the number of objects in which the respective keywords co-occur. The

process of graph construction is of linear complexity 𝑂 (𝑛) to the number 𝑛 (= |𝐷 |) of spatio-textual objects and is

provided in Algorithm 1.

Algorithm 1 Keyword co-occurrence graph construction

1: Input: Data set of spatio-textual objects 𝐷 = {𝑝1, . . . , 𝑝𝑛}
2: Output: Keyword co-occurrence graph 𝐺

3: for 𝑝 ∈ 𝐷 do
4: for each pair of keywords 𝑡𝑖 , 𝑡 𝑗 in 𝑃 do
5: create vertices for keywords 𝑡𝑖 and 𝑡 𝑗 , if they do not exist

6: if exists edge between vertices 𝑡𝑖 , 𝑡 𝑗 then
7: increase the weight of edge (𝑡𝑖 , 𝑡 𝑗 ):𝑤𝑖 𝑗 = 𝑤𝑖 𝑗 + 1
8: else
9: add edge (𝑡𝑖 , 𝑡 𝑗 ) with weight𝑤𝑖 𝑗 = 1

10: end if
11: end for
12: end for
13: return 𝐺

As soon as the graph is constructed, the second step is to invoke a graph partitioning algorithm. Although different

algorithms can be applied, we employ METIS [12], which is a widely-used algorithm for graph partitioning. As a result,

the vertices of the graph (keywords) are assigned into 𝑘 groups, in such a way that keywords that frequently co-occur

together are placed in the same group. Consequently, we obtain 𝑘 disjoint partitions {𝑉1,𝑉2, . . . ,𝑉𝑘 } of the vocabulary
𝑉 , where each partition 𝑉𝑖 contains a subset of the keywords of vocabulary 𝑉 .

3.2.2 Mapping the Keywords of a Spatio-textual Object. A spatio-textual data object 𝑝 may contain keywords from

different (say ℓ ≥ 1) subsets 𝑉𝑖 . Thus, in contrast to the spatial iDistance, we need to assign such a spatio-textual object

𝑝 to ℓ partitions. Therefore, 𝑝 is replicated ℓ times in the transformed data set. This is necessary in order to ensure the

correctness of the computed result set for any spatial-keyword range query.
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For a given spatio-textual data object 𝑝 (with keyword set 𝑃 ) and a partition𝑉𝑖 for which it holds that 𝑃 ∩𝑉𝑖 ≠ ∅, we
define a 1D similarity value val(𝑃,𝑉𝑖 ) based on the following equation:

val(𝑃,𝑉𝑖 ) =
|𝑃 ∩𝑉𝑖 |
|𝑃 | (2)

which practically “distributes” the size of the overlap between sets 𝑃 and the vocabulary 𝑉 to those partitions 𝑉𝑖 that

have 𝑃 ∩𝑉𝑖 ≠ ∅. In fact, val(𝑃,𝑉𝑖 ) represents the size of the overlap normalized over the size of 𝑃 .

Example 3.2. Consider a vocabulary𝑉 = {𝑡1, 𝑡2, . . . , 𝑡9} and let us assume ℓ=2 disjoint partitions:𝑉1 = {𝑡1, . . . , 𝑡5} and
𝑉2 = {𝑡6, . . . , 𝑡9}. For an object 𝑝 with 𝑃 = {𝑡1, 𝑡4, 𝑡6, 𝑡7, 𝑡8}, its similarity value based on 𝑉1 is val(𝑃,𝑉1) = |𝑃∩𝑉1 |

|𝑃 | = 2

5
.

Similarly, it holds that val(𝑃,𝑉2) = |𝑃∩𝑉2 |
|𝑃 | = 3

5
. In this way, we distribute the normalized overlap of 𝑝 to the two

partitions, according to the overlap of keyword set 𝑃 with the keywords in the partitions 𝑉1 and 𝑉2.

The next step is to assign similarity values of data points for different partitions 𝑉𝑖 ,𝑉𝑗 to disjoint 1D intervals of the

textual dimension. Thus, the textual similarity values val(𝑃,𝑉𝑖 ) are mapped to 1D values in such a way that only data

objects that have keywords that belong to the partition 𝑉𝑖 are mapped to the same interval. Expecting that 𝑐 ′ is large

enough, similar to the concept of the spatial iDistance, all data objects 𝑝 with keywords belonging to the partition 𝑉𝑖

(𝑃 ∩𝑉𝑖 ≠ ∅) are mapped to the 1D values:

iSim(𝑝,𝑉𝑖 ) = 𝑖 · 𝑐 ′ + val(𝑃,𝑉𝑖 )

The remaining question is how to bound the value val(𝑃,𝑉𝑖 ). Put differently, how to determine the intervals that

correspond to data objects 𝑝 for which it holds that sim(𝑃,𝑄) ≥ 𝜏 for a given query 𝑞. Given a query 𝑞 and a keyword

partition𝑉𝑖 with overlapping keywords to 𝑞, i.e.,𝑄∩𝑉𝑖 ≠ ∅, for a data object 𝑝 it holds that 𝑃 ∩𝑉𝑖 ≠ ∅ and sim(𝑃,𝑄) ≥ 𝜏 ,
if val(𝑃,𝑉𝑖 ) is within the interval J𝑖 = [𝑙𝑜𝑤,ℎ𝑖𝑔ℎ], where:

J𝑖 .𝑙𝑜𝑤 = 𝑖 · 𝑐 ′ +minscore𝑖

J𝑖 .ℎ𝑖𝑔ℎ = 𝑖 · 𝑐 ′ +maxscore𝑖

while minscore𝑖 and maxscore𝑖 are defined in the following lemma.

Lemma 3.3. Given a query 𝑞 and a keyword partition 𝑉𝑖 , such that 𝑄 ∩ 𝑉𝑖 ≠ ∅, for any data object 𝑝 for which

sim(𝑃,𝑄) ≥ 𝜏 and 𝑃 ∩𝑉𝑖 ≠ ∅, it holds that val(𝑃,𝑉𝑖 ) ∈ [minscore𝑖 ,maxscore𝑖 ], where:

minscore𝑖 = 𝜏 −
|𝑄 ∩ (𝑉 −𝑉𝑖 ) |

|𝑄 | (3)

maxscore𝑖 =
|𝑄 ∩𝑉𝑖 |
|𝑄 | + 1 − 𝜏 (4)

Proof. The intersection |𝑃 ∩ 𝑄 | of keyword sets 𝑃 and 𝑄 can be split in two parts. The first part represents the

keywords that also belong to partition 𝑉𝑖 , while the second part represents the remaining keywords:

|𝑃 ∩𝑄 | = |𝑃 ∩𝑄 ∩ (𝑉𝑖 ∪ (𝑉 −𝑉𝑖 )) | = | (𝑃 ∩𝑄 ∩𝑉𝑖 ) ∪ (𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 )) | =

|𝑃 ∩𝑄 ∩𝑉𝑖 | + |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) |

Thus, we can write sim(𝑃,𝑄) as follows:

sim(𝑃,𝑄) = |𝑃 ∩𝑄 ||𝑃 ∪𝑄 | =
|𝑃 ∩𝑄 ∩𝑉𝑖 |
|𝑃 ∪𝑄 | + |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) ||𝑃 ∪𝑄 | (5)
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Lower bound: Because it holds that: |𝑃 ∩𝑄 ∩𝑉𝑖 | ≤ |𝑃 ∩𝑉𝑖 | and |𝑃 ∪𝑄 | ≥ |𝑃 |, we derive from Eq. 5:

sim(𝑃,𝑄) = |𝑃 ∩𝑄 ∩𝑉𝑖 ||𝑃 ∪𝑄 | + |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) ||𝑃 ∪𝑄 | ≤

|𝑃 ∩𝑉𝑖 |
|𝑃 | + |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) ||𝑃 ∪𝑄 | ≤

val(𝑃,𝑉𝑖 ) +
|𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) |

|𝑃 ∪𝑄 |
because: val(𝑃,𝑉𝑖 ) = |𝑃∩𝑉𝑖 ||𝑃 | (by definition). Similarly, since: |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) | ≤ |𝑄 ∩ (𝑉 −𝑉𝑖 ) | and |𝑃 ∪𝑄 | ≥ |𝑄 |, we
further derive that:

sim(𝑃,𝑄) ≤ val(𝑃,𝑉𝑖 ) +
|𝑄 ∩ (𝑉 −𝑉𝑖 ) |

|𝑄 |
Thus, we can rewrite the latter inequality as follows:

val(𝑃,𝑉𝑖 ) ≥ sim(𝑃,𝑄) − |𝑄 ∩ (𝑉 −𝑉𝑖 ) ||𝑄 |
which eventually leads to:

val(𝑝,𝑉𝑖 ) ≥ 𝜏 −
|𝑄 ∩ (𝑉 −𝑉𝑖 ) |

|𝑄 | = minscore𝑖

Upper bound: Because it holds that |𝑃 ∩𝑄 ∩𝑉𝑖 | ≤ |𝑄 ∩𝑉𝑖 | and |𝑃 ∪𝑄 | ≥ |𝑄 |, we derive from Eq. 5:

sim(𝑃,𝑄) = |𝑃 ∩𝑄 ∩𝑉𝑖 ||𝑃 ∪𝑄 | + |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) ||𝑃 ∪𝑄 | ≤

|𝑄 ∩𝑉𝑖 |
|𝑄 | + |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) ||𝑃 ∪𝑄 |

Furthermore, since it holds that: |𝑃 ∩𝑄 ∩ (𝑉 −𝑉𝑖 ) | ≤ |𝑃 ∩ (𝑉 −𝑉𝑖 ) | and |𝑃 ∪𝑄 | ≥ |𝑃 |, we have:

sim(𝑃,𝑄) ≤ |𝑄 ∩𝑉𝑖 ||𝑄 | + |𝑃 ∩ (𝑉 −𝑉𝑖 ) ||𝑃 | =

|𝑄 ∩𝑉𝑖 |
|𝑄 | + |𝑃 ∩𝑉 ||𝑃 | −

|𝑃 ∩𝑉𝑖 |
|𝑃 |

Moreover, |𝑃 ∩𝑉 | ≤ |𝑃 | and val(𝑃,𝑉𝑖 ) = |𝑃∩𝑉𝑖 ||𝑃 | (by definition), we derive:

sim(𝑃,𝑄) ≤ |𝑄 ∩𝑉𝑖 ||𝑄 | + 1 − |𝑃 ∩𝑉𝑖 ||𝑃 | =
|𝑄 ∩𝑉𝑖 |
|𝑄 | + 1 − val(𝑃,𝑉𝑖 )

Thus, we can rewrite the latter inequality:
|𝑄∩𝑉𝑖 |
|𝑄 | + 1 − val(𝑃,𝑉𝑖 ) ≥ 𝜏 , which leads to:

val(𝑃,𝑉𝑖 ) ≤
|𝑄 ∩𝑉𝑖 |
|𝑄 | + 1 − 𝜏 = maxscore𝑖

□

The consequence of this Lemma is that for a given query 𝑞 with query keywords 𝑄 : (a) we only need to search in

those textual partitions 𝑉𝑖 that have common keywords with 𝑄 (i.e., 𝑄 ∩𝑉𝑖 ≠ ∅), and (b) for each such textual partition

𝑉𝑖 , we need to search only within the bounds of Eq. 3 and 4 defined in Lemma 3.3.

Example 3.4. Figure 3 illustrates the overall approach graphically. At the bottom right, the spatial distribution of the

data set is depicted in the geographical 2D space. At the left, a spatio-textual object 𝑝 , called “Daphne Café”, is shown

with its coordinates (𝑝.𝑥, 𝑝.𝑦) and its textual description 𝑃={Greek, Mediterranean, Diner, Italian}. At the top left, the
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Fig. 3. Mapping spatio-textual objects to a two-dimensional (2D) space.

keyword co-occurrence graph is depicted, where textual partitions are depicted using different colors. Finally, at the top

right, the transformed 2D data space is shown, and the spatio-textual objects are mapped to regions of the 2D space.

Notice the arrows that indicate how textual partitions (on the vertical axis) and spatial clusters (on the horizontal axis)

correspond to 1D intervals of values. Also, note that object 𝑝 is mapped to two points in the transformed space, because

its keywords have been assigned to two distinct textual partitions (denoted with purple and green colours respectively).

4 QUERY PROCESSING

We assume that the spatio-textual data objects in data set 𝐷 are transformed to a 2D space (as described earlier) and

indexed by a traditional spatial index (such as an R-tree) that supports range queries.

Algorithm 2 describes the ST2D algorithm for spatial-keyword range query processing in the transformed 2D space.

Our approach adheres to the filter-and-refinement methodology. In particular, the filtering phase is described in lines 4–8,

while the refinement phase corresponds to lines 9–13. In the following, we explain the two phases in more detail.

9
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Algorithm 2 ST2D: Spatial-keyword range algorithm in transformed space

1: Input: Query 𝑞, radius 𝑟 , similarity threshold 𝜏

2: Output: Result set R
3: R ← ∅, 𝑐𝑎𝑛𝑑 ← ∅
4: I = {I1, . . . ,I𝑛} ← 1D intervals for spatial dimension

5: J = {J1, . . . ,J𝑚} ← 1D intervals for textual dimension

6: for (each pair (I𝑖 ,J𝑗 )) do
7: 𝑐𝑎𝑛𝑑 ← 𝑐𝑎𝑛𝑑∪WindowQuery(I𝑖 ,J𝑗 ) {Filter step}
8: end for
9: for (𝑝 ∈ 𝑐𝑎𝑛𝑑) do
10: if (dist(𝑝, 𝑞) ≤ 𝑟 and sim(𝑃,𝑄) ≥ 𝜏) then
11: R ← R ∪ 𝑝 {Refinement step}
12: end if
13: end for
14: return R

Filtering in the Transformed Space. A spatial-keyword range query 𝑞, defined by location (𝑞.𝑥, 𝑞.𝑦), query

keywords𝑄 , as well as distance threshold 𝑟 and textual similarity threshold 𝜏 , is transformed to a set of window queries

in the transformed 2D space.

With respect to the spatial dimension of the transformed space, for each cluster 𝐶𝑖 (𝐾𝑖 , 𝑟𝑖 ) that intersects with the

circle centered at (𝑞.𝑥, 𝑞.𝑦) and radius 𝑟 defined by the spatial part of the query, we need to retrieve the data objects

with iDistance values belonging to the interval I𝑖 as defined in Section 3.1. Obviously, when the query intersects more

than one clusters, we obtain a set of intervals {I1,I2, . . . }, as many as the intersecting clusters with the query (line 4).

With respect to the textual dimension of the transformed space, for each partition 𝑉𝑖 that has at least one common

term with the query keywords 𝑄 , i.e., 𝑉𝑖 ∩𝑄 ≠ ∅, we obtain an interval that needs to be searched. For partition 𝑉𝑖 , the

interval J𝑖 is obtained, as described in Section 3.2. Again, multiple such intervals {J1,J2, . . . } are defined, as many as

the partitions 𝑉𝑖 that have at least one common term with the query keywords (line 5).

Finally, assuming 𝑛 intervals {I𝑖 } and𝑚 intervals {J𝑖 }, the spatial-keyword range query is equivalent to 𝑛 ·𝑚 window

queries in the transformed space. These queries correspond to the rectangles [I𝑖 ,J𝑗 , ] for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1,𝑚], and
can be efficiently processed by exploiting a traditional 2D index, such as an R-tree (lines 6–8).

Refinement Phase. All data objects retrieved by the window queries are candidate objects for the result set R. From
the candidate results 𝑝 ∈ 𝑐𝑎𝑛𝑑 , only those satisfying the inequality dist(𝑝, 𝑞) ≤ 𝑟 are results with respect to the spatial

constraint. Also, the candidate object must satisfy the textual similarity constraint, i.e., sim(𝑃,𝑄) ≥ 𝜏 . A candidate

object is a result of the spatial-keyword range query, only if it satisfies both constraints, otherwise it is dismissed as

false positive. This is checked in the refinement phase of the algorithm (lines 9–13).

On a final note, recall that an object may be duplicated in the transformed 2D space due to the fact that its keywords

match different textual partitions. Thus, during query processing, when an object is retrieved from window query, it is

processed further only if it has not already been retrieved from another window query, otherwise it is immediately

discarded. This is checked whenever we add an object to the candidate result set.

5 PROXIMITY-AWARE PARTITION RE-ORDERING

As already mentioned, ST2D provides an efficient solution to the problem of spatial-keyword range query processing by

mapping the spatial and textual dimension to a transformed 2D space and employing a filter-and-refinement methodology.

10
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However, a possible bottleneck that might affect the efficiency of this solution when implemented inside a DBMS, is the

multiple (𝑛 ·𝑚) index look-ups (lines 4-8, Algorithm 2) that take place due to the different 1D intervals for the spatial

and textual dimension.
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Fig. 4. Proximity-aware spatial partition re-ordering.

Assuming 𝑛 intervals {I𝑖 } for the spatial dimension, and 𝑚 intervals {J𝑖 } for the textual dimension, a straight-

forward way to deal with this is to get the minimum (𝑚𝑖𝑛(I𝑖 .𝑙𝑜𝑤) and𝑚𝑖𝑛(J𝑗 .𝑙𝑜𝑤)) and maximum (𝑚𝑎𝑥 (I𝑖 .ℎ𝑖𝑔ℎ)
and 𝑚𝑎𝑥 (J𝑗 .ℎ𝑖𝑔ℎ)) bounds of intervals I and J and create a new pair of intervals B = (I𝑖 ,J𝑗 ) that corresponds
to the minimum bounding rectangle of the initial rectangles [I𝑖 ,J𝑗 , ] for 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1,𝑚]. Nevertheless, as
depicted in Figure 4 (left), the different intervals for each dimension might not be continuous or even close to each

other. Consequently, utilizing B to perform the filtering will lead to having a large number of “irrelevant” data returned

by the filtering phase (false positives), which in turn will lead to a more “expensive” refinement phase.

For this reason, we propose the proximity-aware partition re-ordering solution, where the goal is to order spatial

partitions in such a way that partitions that are “close” to each other in the original 2D Euclidean space, will also be

close to the transformed iDistance-based 1D space, as illustrated in Figure 4 (right). Based on Equation 1, this can be

regulated by the 𝑖 parameter, which serves as the spatial cluster identifier (ID). Hence, we need to re-order clusters IDs

11
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Algorithm 3 PPR_ST2D: Spatial-keyword range algorithm in transformed space with proximity-aware parition re-

ordering

1: Input: Query 𝑞, radius 𝑟 , similarity threshold 𝜏

2: Output: Result set R
3: R ← ∅, 𝑐𝑎𝑛𝑑 ← ∅
4: I = {I1, . . . ,I𝑛} ← 1D intervals for spatial dimension

5: J = {J1, . . . ,J𝑚} ← 1D intervals for textual dimension

6: calculate B of I and J
7: 𝑐𝑎𝑛𝑑 ←WindowQuery(B) {Filter step}
8: for (𝑝 ∈ 𝑐𝑎𝑛𝑑) do
9: if (dist(𝑝, 𝑞) ≤ 𝑟 and sim(𝑃,𝑄) ≥ 𝜏) then
10: R ← R ∪ 𝑝 {Refinement step}
11: end if
12: end for
13: return R

in such a way so that clusters that have spatial proximity will have consecutive or at least close IDs. To achieve this, we

utilize a space-filling curve, and more specifically z-order (however other space-filling curves might also be applied), on

each reference object 𝐾𝑖 of the clusters. Subsequently, we order the clusters by the z-order of their reference points and

re-assign the cluster ids 𝑖 based on this order, where 𝑖 ∈ [1, |𝐶 |] and |𝐶 | is the number of spatial clusters.

By doing so, as described in Algorithm 3 (PPR_ST2D), during the filtering phase we perform a single look-up in the

spatial index (line 7), instead of 𝑛 ·𝑚, where 𝑛 is the number of 1D intervals for the spatial dimension and𝑚 the 1D

intervals for the textual dimension. PPR_ST2D exploits the proximity-aware partition reordering so as to reduce the

number of irrelevant data objects retrieved. The refinement procedure remains the same (lines 8-12).

6 EXPERIMENTAL EVALUATION

In this section, we present the results of the experimental evaluation of our approach. All the experiments were

conducted in an Intel(R) Core(TM) i7-8750H CPU (2.20GHz), with 16GM of RAM and 1TB of disk. The mapping

algorithms were implemented in Java, while the actual range query was implemented in PL/SQL. For our experimental

study we utilized PostgreSQL 13 and PostGIS, with the default settings. Technically, the data objects are stored in a

table and the queries are implemented in PL/SQL. The R-tree spatial index was implemented inside PostgreSQL by

utilizing the GiST inteface, while the inverted indexes using the GIN interface.

6.1 Experimental Setup

For our experimental study, we employed two real data sets of spatio-textual objects, namely Booking and Factual. The

former data set, is a set of 200,000 descriptions of hotels crawled from the site of Booking.com
2
. The data set contains

|𝑉 | = 188 distinct keywords. The average, minimum and maximum number of keywords per object in the Booking data

set are 18, 0, 106 respectively. The latter data set, is a set of 104,444 descriptions of restaurants and hotels located in

North America, crawled from Factual
3
. The data set contains |𝑉 | = 199 distinct keywords. The average, minimum and

maximum number of keywords per object in the data set 𝐷 are 10, 1, 47 respectively.

2
http://www.booking.com

3
https://www.factual.com/
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Parameter Values
Data set size |𝐷 | x2, x4, x6, x8, x10

Query radius 𝑟 (in km) 0, 2, 4, 6, 8, 10
Textual similarity threshold 𝜏 0, 0.2, 0.4, 0.6, 0.8, 1
# of query keywords |𝑄 | 1, 2, 3, 4, 5

# of spatial partitions |𝐶 | (in thousands) 0.5, 1, 1.5, 2, 2.5, 3
# of textual partitions 𝑘 5, 10, 15, 20, 25, 30

Table 2. Parameter values (default in bold).

Algorithms. For our experimental study we are going to utilize 2 baseline solutions to the problem of spatial-

keyword range query (spatial_first and best_first), the solution proposed in [15] (STbHI ), the solution presented in

Section 4 (ST2D) and the improved solution presented in Section 5 (PPR_ST2D).

Concerning spatial_first, we initially filter spatially the data set, by employing the R-tree index provided by PostGIS

and for the resulting spatio-textual points we verify the textual predicate. Regarding best_first, in addition to the R-tree

spatial index we built an inverted index on the keyword set and utilize it in order to filter out spatio-textual objects

whose keyword sets do not intersect with the keyword set of 𝑞. Furthermore, we let the DBMS select the order that the

predicates (spatial and textual) will be evaluated.

Also, the solution proposed in [15], STbHI, maps the spatial information to 1D using a space-filling curve (z-order).

Then, each keyword gets concatenated with this 1D value and an inverted index is built on this set, thus duplicating

objects as many times as the number of keywords. This approach favors the textual dimension during query processing,

as the keyword precedes the 1D value in the string representation. Then, for each spatio-textual query point 𝑞, the

spatio-textual objects of 𝐷 that contain at least one keyword are retrieved, by utilizing the inverted index and then the

spatial predicate gets evaluated by mapping the location of 𝑞 in 1D, using the same space-filling curve, and translating

the spatial query into a range query on the z-order values.

Methodology. Initially, we evaluate the scalability of the proposed solutions by increasing the data set size and

measure the execution time. Subsequently, we compare the performance of the solutions that we employed for our

experimental study. Successively, we investigate the effect of setting different values to 𝑟 and 𝜏 to the execution time.

Next, we examine how the number of query keywords (|𝑄 |) affects the performance of the proposed solutions. Finally,

we investigate the effect of the number of spatial partitions |𝐶 | and the number of textual partitions 𝑘 to the performance

of ST2D and PPR_ST2D. The different parameter values are depicted in Table 2, while their default setting is depicted in

bold.

Queries. For each experiment we perform 200 queries and use the median execution time. Each query is generated

by randomly selecting an already existing spatio-textual point from the respective data set. In the experiment where we

vary the number of keywords, we first filter the data set and keep only the spatio-textual points that have a specific

number of keywords and then we randomly select the ones that are used. The query radius 𝑟 and the similarity threshold

𝜏 are set based on the parameters of the experiment, as depicted in Table 2.

6.2 Results

6.2.1 Scalability. As already mentioned, initially, we vary the size of our data set and measure the execution time of

the algorithms. To study the effect of data set size, we focused on the Booking data set, which is almost double in size

than Factual, and we created 5 portions (x2, x4, x6, x8, x10) of the original data set of increased sizes up to 2M objects.
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As the data set size increases, it is expected that the execution time will increase too. In order to measure the factor

of this increase, for each portion 𝐷𝑖 of the data set with 𝑖 ∈ [1, 5], we calculate 𝑆𝑙𝑜𝑤𝐷𝑜𝑤𝑛 =
𝑇𝐷𝑖

𝑇𝐷
1

, where 𝑇𝐷1
is the

execution time of the first portion (i.e. x2) and 𝑇𝐷𝑖
the execution time of the current one. As illustrated in Figure 5(a),

all of the solutions scale linearly with the size of the data set. However, we can observe two distinct groups based on

scalability, a group consisting of spatial_first and STbHI, that appear to have linear scalability and another group that

consists of best_first, ST2D and PPR_ST2D, that seem to exhibit a slightly better performance in terms of scalability.
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Fig. 5. Scalability when varying the data set size (a) in terms of 𝑆𝑙𝑜𝑤𝐷𝑜𝑤𝑛 and (b) Execution time.

Furthermore, as depicted in Figure 5(b), it can be observed that spatial_first performs worse than the other 4

approaches and by almost an order of magnitude slower than ST2D and PPR_ST2D. This behavior is somewhat expected

since in best_first we utilize both a spatial and a textual index. Moreover, we allow the DBMS to utilize the query

optimizer and choose the evaluation order of the predicates. Furthermore, STbHI prioritizes the textual part of the

query, which has better selectivity than the spatial part of the query since in the Booking data set we have 188 distinct

keywords. This also supported by the examining the extreme cases where 𝑟 = 0 and 𝜏 = 0, as depicted in Figures 6(a)

and (c), where in the former spatial_first outperforms STbHI and in the latter is the other way around. Furthermore, in

ST2D and PPR_ST2D the spatial and textual information are mapped in 2D space and then the R-tree spatial index is

utilized for both the spatial and textual dimension. For the same reasons, best_first, ST2D and PPR_ST2D outperform

STbHI, since in best_first the order of predicates is selected by the query optimizer and in ST2D and PPR_ST2D the

spatial and textual information are treated equally. In addition, it can be observed that ST2D performs worse than

best_first and PPR_ST2D mostly due to the fact that for each query the we need to perform multiple look-ups on the

spatial index, as described in Algorithm 2. Finally, we can see that PPR_ST2D outperforms all of the other approaches

since it filters more efficiently the data set by employing the data mapping technique presented in Section 3 and on top

of this it performs one look-up per query, which speeds up significantly the filtering phase of the query.

6.2.2 Sensitivity Analysis. Subsequently, we study the effect of the spatial predicate on the execution time. Towards

this direction, we set different values to 𝑟 while keeping the values of the other parameters fixed. In more detail, as
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Fig. 6. Execution time when varying the spatial predicate on (a) the Booking and (b) the Factual data set, the textual predicate on (c)
the Booking and (d) the Factual data set and the number of query keywords on (e) the Booking and (f) the Factual data set.

delineated in Figures 6(a) and (b), the larger the 𝑟 , the higher the execution time of the query for all 5 approaches. Next,

we vary the values of the textual predicate 𝜏 while keeping the values of the other parameters fixed. As presented in

Figures 6(c) and (d), the spatial_first, best_first and STbHI solutions, does not seem to be affected by 𝜏 . On the other

hand, we can observe a decreasing trend in ST2D and PPR_ST2D as 𝜏 increases. This behaviour is caused by the fact

that both of these solutions utilize the textual information more efficiently at the filtering stage of the query, since the

adopt the mapping technique presented in Section 3. Hence, the more “strict” the query becomes, as far as it concerns

the textual information, the less data qualify for the filtering step.

Concerning the special case where 𝑟 = 0, we can observe that the spatial_first solution performs equally well as the

PPR_ST2D, since it initially performs the spatial filtering by utilizing the R-Tree index, which in turn leads to a very

“light” refinement phase. On the other hand, ST2D does not perform very well due to the large number of look-ups

in the index. Moreover, best_first performs slightly worse than spatial_first, since it depends on the query optimizer

to select the order of predicates, while spatial_first always chooses to filter the spatial dimension first. Finally, STbHI

performs worse than spatial_first, best_first and PPR_ST2D, since it prioritizes the textual dimension. Considering the

special case where 𝜏 = 0, we observe that the spatial_first solution performs worse, since it does not filter the search

space efficiently. Moreover, even though STbHI prioritizes the textual dimension, it does not incorporate into the search

the Jaccard similarity, hence it first retrieves all the records that contain the specific keywords and then evaluate their

Jaccard similarity. On the contrary, ST2D and PPR_ST2D perform a lot better since they both incorporate the Jaccard

metric in the search, by adjusting accordingly the upper and lower bound of the search range of the textual dimension

in the transformed 2D space.
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Fig. 7. Execution time when varying the number of (a) Spatial and (b) Textual partitions.

Moreover, we examine how the number of query keywords affects the execution time. As illustrated in Figures 6(e)

and (f), it appears that there is an increasing trend in the execution time as the number of query keywords increase for

all 5 approaches.

Finally, we investigate the effect of the number of spatial and textual partitions to the execution time of ST2D and

PPR_ST2D. Regarding the number of spatial partitions, as illustrated in Figure 7(a), it does not seem to affect either

the ST2D or the PPR_ST2D solutions. On the other hand, concerning the number of textual partitions, we can observe

an obvious increasing trend in the execution time as the number of textual partitions increase to both ST2D or the

PPR_ST2D, as depicted in Figure 7(b). This is due to the fact that, as the number of textual partitions increase, the

amount of replicated data will also increase, since each spatio-textual data object can be assigned to multiple textual

partitions, as explained in Section 3.2.2.

7 RELATEDWORK

Due to the popularity of spatial-keyword queries and their wide applicability in practical scenarios, several approaches

have been proposed to support efficient query processing [3, 4, 6, 17].

There exist some approaches for mapping spatio-textual data to lower dimensional representations, in particular

1D alphanumeric values, which can be used as keys by data access mechanisms that support key-based retrieval. For

example, ST-HBase [15] maps the spatial information to 1D using a space-filling curve and concatenate each keyword

with the 1D value, thus duplicating objects as many times as the number of keywords. However, this 1D mapping

inevitably favors the textual dimension during query processing, as the keyword precedes the 1D value in the string

representation. Differently, in our work which is performed in the context of the SPADES project [19], we propose

a mapping that transforms spatio-textual data to a 2D space, where the dimensions of space and text are of equal

importance.

The most prominent approaches for effective indexing of spatio-textual data rely on a specialized access method

for joint management of spatial and textual dimensions, so as to facilitate efficient query processing. In general, the
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approaches are classified as spatial-first, text-first or interleaved, based on the primary dimension (space or text) selected

to organize the data [17]. Early approaches [5, 7] have studied the benefits of spatial-first vs. text-first indexing.

In [10], the spatial-keyword query is defined as a combination of range queries and boolean keyword search. A

special case is the distance-first top-𝑘 spatial keyword query [9], which returns a ranked list of the 𝑘 objects that

contain all of keywords and are closest to the query location. That is, distance-first top-𝑘 spatial keyword query is

a combination of a top-𝑘 spatial query and a boolean keyword query. In [9] the 𝐼𝑅2-Tree was proposed which is a

combination of R-Tree and the signature file. Two different [8, 14] indexing approaches have been proposed that employ

a hybrid index that augments the nodes of an R-tree with inverted indexes. The inverted index at each node refers to a

pseudo-document that represents all the objects under the node. Another hybrid indexing structure that combines the

R*-tree and bitmap indexing to process the spatial-keyword query was proposed in [22].

The Spatial Inverted Index (S2I) was proposed in [18] for processing top-𝑘 spatial keyword queries more efficiently.

The S2I index maps each keyword to a different aggregate R-tree that stores the objects with the given term. The

aggregate R-tree stores the latitude and longitude of the objects, and maintains an aggregated value that represents the

maximum term impact of the objects under the node. In fact, the aggregated R-tree is employed only when the number

of objects exceeds a given threshold. Otherwise, the objects are stored in a file, one block per term.

Interleaved indexing approaches have also been studied in [16, 20]. The AP-tree [20] combines a Quadtree with

a trie built on keywords into a single data structure. Since both Quadtrees and tries are hierarchical structures, the

AP-tree is also a hierarchical structure with the distinguishing feature that a node can be either spatial or text node.

FAST [16] is an approach that integrates the spatial pyramid [2] with a new text index, called Adaptive Keyword Index

(AKI). AKI is a hybrid data structure for text, which includes features from inverted lists and keyword tries. In its basic

form, AKI keeps inverted lists for each keyword present in the collection. However, it has been observed that when

the length of posting lists increases too much, the performance of query processing deteriorates. Motivated by this

fact, AKI identifies such long postings and changes their structure to resemble a trie, thus using more keywords to

distinguish the objects.

Even though the afore-described methods for efficient querying spatio-textual data are effective, they typically rely

on a specialized indexing structure, which has high memory requirements. Instead, our approach does not require

a specialized index for spatio-textual queries, and also enables effective partitioning of the data that preserves data

locality. Finally, with respect to spatio-textual query types, the query targeted in our work is an approximate keyword

range query (similar to [1]), where the keyword constraint is not boolean. Instead, we retrieve the objects that are more

similar to the query keywords, based on Jaccard similarity, and belong to a spatial query range.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we propose a novel approach of transforming spatio-textual data to a two-dimensional (2D) data space.

The first axis represent the spatial information and we employ the iDistance concept for computing the value of this

dimension for each data object. The second axis represents the textual information. First, a graph is created that captures

the co-occurrence of the keywords and then a graph partitioning algorithm is employed for creating disjointed textual

partitions. We provide a novel mapping of the data objects to an one-dimensional (1d) value based on the textual

partitioning and provide a novel bounding schema to avoid accessing all objects during query processing. Finally, in

our experiments, we demonstrate the efficiency of our proposed approach. Regarding future work, we intend to study

generalizations of the proposed approach, for different spatial-keyword query types as well as for other text similarity

functions.
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