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Introduction
• NoSQL stores today

• increasingly adopted by modern applications and enterprises 

• for scalable storage and efficient querying over vast data collections

• Strong features: 
• support for schemaless data models, high availability and scalability

• Uber reports thousand of million trips per quarter year

Uber Technologies, Inc. 
Q1 2022 Earnings, 
Supplemental Data
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Motivation

• Despite the popularity of NoSQL systems, they are not optimized for spatial data

• Major limitations:
• No optimized spatio-temporal indexing methods (only limited support for spatial data)

• No support for declarative querying (such as SQL)

• Different (heterogeneous) query languages
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Motivation
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The NoDA abstraction layer
• We propose NoDA, an abstraction layer for simple and uniform access to different 

NoSQL stores
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The NoDA Architecture
• It is composed of two components

• The Programming API for big data developers

• The Declarative (SQL) interface for data scientists

• The programming API provides a set of basic 
data access operators, supported by all NoSQL 
stores

• Examples of data access operators include 
filter, project, groupBy, aggregate and sort

• This enables the provision of an SQL interface 
to end users

• An SQL query is translated to a sequence of 
data access operators
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NoDA: The programming API
• Access operators are expressed in the following way:

• At first, a connection is instantiated 
• noSqlDBSystem is an object reference that handles the connection

• Then, a query is formulated for execution
• by specifying a sequence of data access operators, using method chaining

• NoDA can be optionally associated with a Spark session
• useful for fetching the data objects in the form of a Spark Dataframe
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NoDA: The declarative interface

• Additionally supports an SQL-like query language

• Every SQL clause is mapped to a specific NoDA operation, e.g.,
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NoDA Implementation on top of HBase
• Under the hood, NoDA

capitalizes the libraries of 
each NoSQL store 

• It uses its native query 
language for performing its 
abstract operations

• The implementation on top of 
HBase (wide-column store) 
store exploits its filters

• Complex operations in NoDA
are transformed to a series of 
HBase filters
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NoDA Implementation on top of Redis

• In Redis (key-value) store, 
data are modeled as key-
value pairs 

• This data model has a lower 
expressive power

• Redis pipelining is utilized, 
handling set structures in 
which set operations are 
performed
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Spatio-temporal queries in NoDA/HBase (1/2)

• Wide-column store (HBase) case

• We encode the spatio-temporal information in 
the row key of each record

• We exploit the Geohash of the spatial 
coordinates (x, y)

• The Geohash is concatenated with the time (t)
of the record in Unix timestamp format

• The final expression is then concatenated with 
a random string to ensure the key’s 
uniqueness 
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Spatio-temporal queries in NoDA/HBase (2/2)

• Spatio-temporal queries are implemented via fuzzy row and the custom filters as 
server-side filters for filtering and refining the records 

• The filters are executed on the regionservers (server-side)
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Spatio-temporal queries in NoDA/Redis (1/2)

• Key-value store (Redis) case

• Each spatio-temporal record is stored in a key-
value entry where the key is its identifier (ID)

• The value is a hash that stores the object’s 
information

• Range queries are not supported in these stores

• We exploit the structures that are supported in 
the key-value entries

• The Hilbert value (h) of each 3D spatio-temporal 
record (x, y, t) is computed
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Key Value

ID1 x1, y1, t1, a1, …

ID2 x2, y2, t2, a2, …

… …

IDn xn, yn, tn, an, …
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Spatio-temporal queries in NoDA/Redis (2/2)
• The Hilbert values are stored with the record’s identifier in a Sorted Set structure

• The structure is accessed by a dummy key, named “location”

• The set is sorted by the Hilbert value, effectively serving as an index
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Experiments – Setup
• Carried out in a cluster of 17 virtual machines (VMs)

• 12 VMs for data storage (shards, regionservers)

• 2 VMs for data insertion and querying

• 3 VMs for services (e.g., config servers for MongoDB and Namenode, Zookeeper for HBase)

• Real-life (REAL) data and synthetic (SYNTH) data sets are used

• Spatio-temporal queries
• Used 4 queries with fixed temporal interval while varying the spatial selectivity

• Comparative execution time is measured 
• NoDA vs. a baseline approach in each store 
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Experiments – HBase 
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REAL SYNTH
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Experiments – Redis 
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REAL SYNTH
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Experiments – Scalability w/ size of data set 
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HBase Redis
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Related Work

• Our work, relates to polystores (BigDAWG, Icarus, CloudMdsQL) 

• Also, it relates to data access query engines (Pig Latin, Presto, Hive)

• NoDA is not tightly coupled with the data sources it supports

• NoDA provides data access in a unified manner (no matter the underlying store) 

• Can be easily extended to other stores

• It resembles the JDBC interface, used for accessing relational databases
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Conclusions

• We introduced NoDA for unified data access on top of NoSQL stores

• NoDA focuses on spatio-temporal data, providing spatio-temporal operators

• NoDA exposes both a programming API and an SQL interface 

• Under the hood, the languages and native libraries of stores are exploited

• So far, it has been implemented on top of MongoDB, HBase and Redis

• Future work
• Augment the set of mobility-oriented operators (e.g., add trajectory operators)

• Integrate new operator types, e.g., support spatio-textual data

• Implement a mechanism for operating on two or more stores simultaneously
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