
Tearing Down the Tower of Babel: 
Unified and Efficient Spatio-temporal 

Queries for NoSQL Stores
Nikolaos Koutroumanis1, Christos Doulkeridis1, Akrivi Vlachou2

1Department of Digital Systems
University of Piraeus, Greece

2Department of Information & 
Communication Systems Engineering

University of the Aegean, Greece

This work has received funding from This research work has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant

agreement No 780754 (Track&Know project), and from the Hellenic Foundation for

Research and Innovation (HFRI) and the General Secretariat for Research and Technology

(GSRT), under grant agreements No 1667 and No HFRI-FM17-81



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Contents

I. Introduction

II. Motivation

III. The NoDA abstraction layer

IV. NoDA implementation on top of NoSQL stores

V. Spatio-temporal queries in NoDA

VI. Experiments

VII.Related Work

VIII.Conclusions

1



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Introduction
• NoSQL stores today

• increasingly adopted by modern applications and enterprises 

• for scalable storage and efficient querying over vast data collections

• Strong features: 
• support for schemaless data models, high availability and scalability

• Uber reports thousand of million trips per quarter year

Uber Technologies, Inc. 
Q1 2022 Earnings, 
Supplemental Data

2



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

• Despite the popularity of NoSQL systems, they are not optimized for spatial data

• Major limitations:
• No optimized spatio-temporal indexing methods (only limited support for spatial data)

• No support for declarative querying (such as SQL)

• Different (heterogeneous) query languages

3



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

4

Let’s develop a big data 
application using MongoDB



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

5

Let’s develop a big data 
application using MongoDB



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

6

Let’s now develop the same 
application using HBase



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

7

Let’s now develop the same 
application using HBase



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

8

Let’s now develop the same 
application using Redis



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Motivation

9

Let’s now develop the same 
application using Redis



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

The NoDA abstraction layer
• We propose NoDA, an abstraction layer for simple and uniform access to different 

NoSQL stores

10



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

The NoDA Architecture
• It is composed of two components

• The Programming API for big data developers

• The Declarative (SQL) interface for data scientists

• The programming API provides a set of basic 
data access operators, supported by all NoSQL 
stores

• Examples of data access operators include 
filter, project, groupBy, aggregate and sort

• This enables the provision of an SQL interface 
to end users

• An SQL query is translated to a sequence of 
data access operators

11



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

NoDA: The programming API
• Access operators are expressed in the following way:

• At first, a connection is instantiated 
• noSqlDBSystem is an object reference that handles the connection

• Then, a query is formulated for execution
• by specifying a sequence of data access operators, using method chaining

• NoDA can be optionally associated with a Spark session
• useful for fetching the data objects in the form of a Spark Dataframe

12



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

NoDA: The declarative interface

• Additionally supports an SQL-like query language

• Every SQL clause is mapped to a specific NoDA operation, e.g.,

13



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

NoDA Implementation on top of HBase
• Under the hood, NoDA

capitalizes the libraries of 
each NoSQL store 

• It uses its native query 
language for performing its 
abstract operations

• The implementation on top of 
HBase (wide-column store) 
store exploits its filters

• Complex operations in NoDA
are transformed to a series of 
HBase filters

14



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

NoDA Implementation on top of Redis

• In Redis (key-value) store, 
data are modeled as key-
value pairs 

• This data model has a lower 
expressive power

• Redis pipelining is utilized, 
handling set structures in 
which set operations are 
performed

15



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Spatio-temporal queries in NoDA/HBase (1/2)

• Wide-column store (HBase) case

• We encode the spatio-temporal information in 
the row key of each record

• We exploit the Geohash of the spatial 
coordinates (x, y)

• The Geohash is concatenated with the time (t)
of the record in Unix timestamp format

• The final expression is then concatenated with 
a random string to ensure the key’s 
uniqueness 

16

1

2 4

3 9 11

1210

13 15

16148

75

6

Z-order curve

suj4 – 1652432507473 – RANDOMSTRING



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Spatio-temporal queries in NoDA/HBase (2/2)

• Spatio-temporal queries are implemented via fuzzy row and the custom filters as 
server-side filters for filtering and refining the records 

• The filters are executed on the regionservers (server-side)

17



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Spatio-temporal queries in NoDA/Redis (1/2)

• Key-value store (Redis) case

• Each spatio-temporal record is stored in a key-
value entry where the key is its identifier (ID)

• The value is a hash that stores the object’s 
information

• Range queries are not supported in these stores

• We exploit the structures that are supported in 
the key-value entries

• The Hilbert value (h) of each 3D spatio-temporal 
record (x, y, t) is computed

18

Key Value

ID1 x1, y1, t1, a1, …

ID2 x2, y2, t2, a2, …

… …

IDn xn, yn, tn, an, …

12



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Spatio-temporal queries in NoDA/Redis (2/2)
• The Hilbert values are stored with the record’s identifier in a Sorted Set structure

• The structure is accessed by a dummy key, named “location”

• The set is sorted by the Hilbert value, effectively serving as an index

19



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Experiments – Setup
• Carried out in a cluster of 17 virtual machines (VMs)

• 12 VMs for data storage (shards, regionservers)

• 2 VMs for data insertion and querying

• 3 VMs for services (e.g., config servers for MongoDB and Namenode, Zookeeper for HBase)

• Real-life (REAL) data and synthetic (SYNTH) data sets are used

• Spatio-temporal queries
• Used 4 queries with fixed temporal interval while varying the spatial selectivity

• Comparative execution time is measured 
• NoDA vs. a baseline approach in each store 

20



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Experiments – HBase 

21

REAL SYNTH



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Experiments – Redis 

22

REAL SYNTH



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Experiments – Scalability w/ size of data set 

23

HBase Redis



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Related Work

• Our work, relates to polystores (BigDAWG, Icarus, CloudMdsQL) 

• Also, it relates to data access query engines (Pig Latin, Presto, Hive)

• NoDA is not tightly coupled with the data sources it supports

• NoDA provides data access in a unified manner (no matter the underlying store) 

• Can be easily extended to other stores

• It resembles the JDBC interface, used for accessing relational databases

24



N. Koutroumanis @ MDM, Virtual, June 6–9, 2022

Conclusions

• We introduced NoDA for unified data access on top of NoSQL stores

• NoDA focuses on spatio-temporal data, providing spatio-temporal operators

• NoDA exposes both a programming API and an SQL interface 

• Under the hood, the languages and native libraries of stores are exploited

• So far, it has been implemented on top of MongoDB, HBase and Redis

• Future work
• Augment the set of mobility-oriented operators (e.g., add trajectory operators)

• Integrate new operator types, e.g., support spatio-textual data

• Implement a mechanism for operating on two or more stores simultaneously

25



Thank you for your attention
More info:

our group: http://www.datastories.org/

project Track & Know: https://trackandknowproject.eu/

project Spades: https://www.ds.unipi.gr/spades/

project Chorologos: https://www.ds.unipi.gr/chorologos/

e-mail: koutroumanis@unipi.gr

http://www.datastories.org/
https://trackandknowproject.eu/
https://www.ds.unipi.gr/spades/
https://www.ds.unipi.gr/chorologos/

