DAk

Tearing Down the Tower of Babel:
Unified and Efficient Spatio-temporal
Queries for NoSQL Stores

Nikolaos Koutroumanis?, Christos Doulkeridis?, Akrivi Vlachou?

1Department of Digital Systems
University of Piraeus, Greece

2Department of Information &
Communication Systems Engineering
University of the Aegean, Greece @

This work has received funding from This research work has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant o — G_UJ
agreement No 780754 (Track&Know project), and from the Hellenic Foundation for —

Research and Innovation (HFRI) and the General Secretariat for Research and Technology nigﬁ:tlns:::ﬁw:::::v
(GSRT), under grant agreements No 1667 and No HFRI-FM17-81

Contents

Introduction
|. Motivation
Il. The NoDA abstraction layer
V. NoDA implementation on top of NoSQL stores
V. Spatio-temporal queries in NoDA
VI. Experiments
VII.Related Work
VIIl.Conclusions

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Introduction

* NoSQL stores today

* increasingly adopted by modern applications and enterprises
» for scalable storage and efficient querying over vast data collections

» Strong features:
* support for schemaless data models, high availability and scalability

Capital Hill Station

* Uber reports thousand of million trips per quarter year

ose a ride, or swipe up for more

. UberX $10.40
8:15am

Uber Green 24 $11.40
" 815am dropoff
Low-emission rides

Comfort
818am

B 1234

Confirm Uber Green ﬁp

Uber Technologies, Inc.
Q1 2022 Earnings,
Supplemental Data

Q1 2021 Q22021 Q3 2021 Q4 2021 Ql 2022

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022 2

Motivation

* Despite the popularity of NoSQL systems, they are not optimized for spatial data

éredls @ﬂeoé ® mongo HeRsEAR, I

cassandra

* Major limitations:
* No optimized spatio-temporal indexing methods (only limited support for spatial data)
* No support for declarative querying (such as SQL)
» Different (heterogeneous) query languages

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Motivation

Let’s develop a big data

application using MongoDB

mongo
0 mong

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Motivation

Let’s develop a big data
application using MongoDB

Listing 1.1: Typical code for a MongoDB filter query.

MongoClient mongoClient = new MongoClient () ;
MongoCollection m = mongoClient

.getDatabase ("test") .getCollection("collection");
FindIterable r = m.find(and(gte ("price",50),lte("price",80)));
mongoClient.close();

o= W Do =

. mongo

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Motivation

Let’s now develop the same
application using HBase

Listing 1.1: Typical code for a MongoDB filter guery.

MongoClient mongoClient >\new Mongg&lient () ;
MongoCollection m = mongoClIsgt

.getDatabase ("test") .geflolIection ("collection");
FindIterable r = m.find(ahd (gte ("prysge",50),1te ("price",80)));
mongoClient.close () ;

L I ¥ B e R

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Motivation

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

=T =R =T % B VLR o

= e e e e
Vo W N = O

Let’s now develop the same
application using HBase

Listing 1.2: Typical code for an HBase filter query.

Configuration c¢ = HBaseConfiguration.create();

Connection connection = ConnectionFactory.createConnection(c);
Table table = connection.getTable (TableName.valueOf ("test"));

Scan scan = new Scan/();

byte[] columnFamily = Bytes.toBytes ("products");

byte[] gqualifier = Bytes.toBytes("price");

FilterBase fl = new SingleColumnValueFilter (columnFamily,
qualifier, CompareOperator.GREATER_OR_EQUAL,
Bytes.toBytes (50));

new SingleColumnValueFilter (columnFamily,
qualifier, CompareOperator.LESS_OR_EQUAL,
Bytes.toBytes (80));

scan.setFilter (new FilterList (£f1, £2));

ResultScanner resultScanner = table.getScanner (scan);
table.close ();

FilterBase f2

Motivation

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Let’s now develop the same

application using Redis

Listing 1.2: Typical code for an HBase filter query.

Scan scan = new ScCs
byte[] columnFamily
byte[] gqualifier =
FilterBase f1 = YOmnValueFilter (columnFamily,

=T =R =T % B VLR o

FilterBase f2 = % Nlter (columnFamily,
qualifier, CompareOperatox LESS_OR_EQUAL,
Bytes.toBytes (80));

—_
[=]

—_
—

—
[oF]

[
= W
o own
D Q
o
=]
]
)]

tScanner resultScanner = table.getScanner (scan)y

& redis

—
w

able.close () ;

Motivation

Let’s now develop the same
application using Redis

Listing 1.3: Typical code for a Redis filter query.

Jedis jedis = new Jedis();

Set<Tuple> rs = jedis.zrangeByScoreWithScores ("price",50,80);
3 jedis.close () ;

& redis

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

The NoDA abstraction layer

* We propose NoDA, an abstraction layer for simple and uniform access to different
NoSQL stores

Big Data
= Application
MongoDB |
Code

" DB HERSE MR
The NoSQL landscape The NoSQL landscape

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

10

The NoDA Architecture

* |tis composed of two components o Spark bt rame
« The Programming API for big data developers [ﬁ] Initialization >| ApacheSpark‘ [—
* The Declarative (SQL) interface for data scientists Y sQlL Query Pass Spark
AP| peecececcncecsonn- ' l Session Results

)] . Programming API
[J
The programming API provides a set of basic =D SQL Interface

data access operators, supported by all NoSQL

stores Coot) Qoroect) Cerousdy)
* Examples of data access operators include NoDA Engine (C Core Module)
filter, project, groupBy, aggregate and sort L ,

* This enables the provision of an SQL interface

to end users -
* An SQL query is translated to a sequence of SS—
data access operators m

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

([]
O

NoDA: The programming API

* Access operators are expressed in the following way:

Listing III.1: Code template for expressing queries using

NoDA.
1 Dataset<Row> dataset = noSqglDbSystem.operateOn("table_nams")
2 .filter(...).filter(...) //definition phase
3 .groupBy(...).sort(...) /S/definition phase
4 .project(...) //definition phase
5 .toDataframe(); //execution phase

» At first, a connection is instantiated
* noSqlDBSystem is an object reference that handles the connection

* Then, a query is formulated for execution
* by specifying a sequence of data access operators, using method chaining

* NoDA can be optionally associated with a Spark session
» useful for fetching the data objects in the form of a Spark Dataframe

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

12

NoDA: The declarative interface

* Additionally supports an SQL-like query language

* Every SQL clause is mapped to a specific NoDA operation, e.g.,

.operateOn ("heotels")
.filter (eg("star",b3))

"oity"
.aggregate (avg ("price_day"))
.filter (gt ("AVG (price _day)",500))
project(alty", "AVG(price _day) ")
.sort(asc ("AVGe(price_day) "))
.1limit (20)

SELECT city,AVG(price_ day)
FEOM hotels
WHERE =tar = 5

HAVING AVG (price_day) >500

ORDER BY AVG (price_ day)
LIMIT 20

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

13

NoDA Implementation on top of HBase

 Under the hood, NoDA
capitalizes the libraries of
each NoSQL store

* |t uses its native query
language for performing its
abstract operations

* The implementation on top of
HBase (wide-column store)
store exploits its filters

 Complex operations in NoDA
are transformed to a series of
HBase filters

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

o M M M W M M W M M M M M M M W

| Dataset<Row> df = noSqlDbSystem.operateOn ("orders")

|
: |
| (S) .filter (and(eq("customer:city", "Athens"), :
: gt ("order:price",100))) :
: (F, O) .project ("customer", "order:id") i
' (P) .1limit (500)
, AE)
' .toDataframe () ; NoDA Code |

5 = FilterList(
SingleColumnValueFilter ("customer:city",EQUAL, "Athens"),
SingleColumnValueFilter ("order:price"”, GREATER, 100)
) =-> MUST PASS ALL

F = FamilyFilter (EQUAL, "customer") P = PageFilter (500)
FamilyFilter (EQUAL, "order")
QualifierFilter (EQUAL,"id")) -> MUST PASS ALL

Result:

]

]

]

1

]

]

]

]

]

]

]

]

]

|0 = FilterList(
]

]

]

]

]

]

]

]

' l er ls F t F .:__/Ilr - _}

! FilterList(s, F, O, P MUST PASS ALL
]

NoDA Implementation on top of Redis

* In (key-value) store,

data are modeled as key- LT ;
value pairs | .filter(and(eq("director™, "Ron Howard"), |
_ | gte ("year",2010))) |
* This data model has a lower | .count () ; NoDA Code|
EXpressive power i [ZRANGEBYSCORE movies:year 2010 +inf |
. ‘l: | //store the results (ids’) in a Set with key X l
. 15 ”t'“z‘?d' | L, | =xemre x 100 |
handling set structures in I |

- . | " o e A o . T amn
Wthh Set Operatlons are : g:;;[:'EESileEB movies:direc tor:Ron Howard"” X Y i
performed i - |
 —— Al saw0vy Redis Code

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022 15

Spatio-temporal queries in NoDA/HBase (1/2)

Wide-column store (HBase) case

We encode the spatio-temporal information in

the row key of each record

We exploit the Geohash of the spatial
coordinates (x, y)

The Geohash is concatenated with the time (t)
of the record in Unix timestamp format

The final expression is then concatenated with
a random string to ensure the key’s
uniqueness

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

L 16
!Q\ "\ AN :
Lo NN NN
5" 7 3\ 13%] 15

\ \

\
MR
y ! (N
! ! \\: \:
1 | s 5 | “#1

Z-order curve
suj4 — 1652432507473 - RANDOMSTRING

16

Spatio-temporal queries in NoDA/HBase (2/2)

* Spatio-temporal queries are implemented via fuzzy row and the custom filters as
server-side filters for filtering and refining the records

* The filters are executed on the regionservers (server-side)

column family: "location”

range query sw8zf-1612603920723-... —33-H469—IFF-0433—161360-—
[{11.' I'.I'I]_J t1:|.l {Iza 1I'IE.I tz]]

Fuzzy row filter ‘ L
swBzg-1612605869484-... 23.7276 379652 161260..

mask
swBz2-1612607777777-...

Matched rows ¥

N. Koutroumanis @ MDM, Virtuc %’ Refinement PhESE

17

Spatio-temporal queries in NoDA/Redis (1/2)
* Key-value store () case Key

* Each spatio-temporal record is stored in a key- ID, Xy Yo by Ay, oo
value entry where the key is its identifier (ID) ID, X2 Yo Ty Ay -
e The value is a hash that stores the object’s
information D, Xno Yoo T @y oo

Range queries are not supported in these stores

We exploit the structures that are supported in / /

the key-value entries
* The Hilbert value (h) of each 3D spatio-temporal

record (X, vy, t) is computed @

v /

12

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

18

Spatio-temporal queries in NoDA/Redis (2/2)
* The Hilbert values are stored with the record’s identifier in a Sorted Set structure

* The structure is accessed by a dummy key, named “location”

* The set is sorted by the Hilbert value, effectively serving as an index
Key-value store

Spatio-temporal
range query
[(X1, Y, £1)s (X5, Y2, T5)]

——

R etrievedl sorted by Hilbert value (h))
IDs

Reﬁnem#int phase

Data objects:
(xy,¥,t,85,.-.) 2 1D
(X5,¥2,t585,...) 21D,

{Kni?natnﬂan-'"} ra IDn

—

N. Koutroumanis @ MDM, Virtual, Junc o—7, cuce

19

Experiments — Setup

Carried out in a cluster of 17 virtual machines (VMs)
* 12 VMs for data storage (shards, regionservers)
* 2 VMs for data insertion and querying
* 3 VMs for services (e.g., config servers for MongoDB and Namenode, Zookeeper for HBase)

Real-life (REAL) data and synthetic (SYNTH) data sets are used

Spatio-temporal queries
* Used 4 queries with fixed temporal interval while varying the spatial selectivity

Comparative execution time is measured
* NoDA vs. a baseline approach in each store

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

20

Experiments — HBase

B

. IH'l'[]T [HE-EIFEI:I . 1x10 :HEEIFEI:I.
E 100000 r :]Ej 10000 [
5 1000 | 5 |
g 100§ 2 100
L 5 L]
b 10 | b 10}

11 11

Q, Qs Q4 Q, Q, Qs Qy Qy
Clueries Cueries
REAL SYNTH

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

21

Experiments — Redis

100000 BelR
™) MoDA e
E 10000 |
@
£ 1000 |
-
L 100 }
=
£l
o 10 }
LL

Q

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Q; Q5
Clueries

REAL

Execution time {ms)

100000

10000

1000 ¢
100 }
10

Q,

Q; U5
Clueries

SYNTH

22

Experiments — Scalability w/ size of data set

8
1]'"[]? BeH —— 10000 F BslR
@ 1x10° | NoDA s 1 B HonA m—
E qx108 } 1 £ 1000 |
£ 100000 | 2
= 10000 } 1 = 100 }
= 1000 | | = |
== == i
ﬁ 100 | 1 ﬁ 10 1
LLJ 10 }] LLJ '
.
REAL, REAL, REAL;REAL, REAL, REAL, REAL; REAL,
Data scale factor Data scale factor

HBase

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

Related Work

Our work, relates to polystores (BigDAWG, Icarus, CloudMdsQL)

Also, it relates to data access query engines (Pig Latin, Presto, Hive)

NoDA is not tightly coupled with the data sources it supports

[J
=
o
O
>

©
-
o
<.
Q
)
wn
Q
)
—t+
Q
Q
O
O
@
wn
(7p]
=
Q
c
S
=
®
Q
3
Q
S
S
@
-
S
o
3
Q
—t
—t
D
-
—t
>
®
=
S
o
D
>
=.
S
6o
n
—t
o
S
L

Can be easily extended to other stores

It resembles the JDBC interface, used for accessing relational databases

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022 24

Conclusions

We introduced NoDA for unified data access on top of NoSQL stores

NoDA focuses on spatio-temporal data, providing spatio-temporal operators

NoDA exposes both a programming APl and an SQL interface

Under the hood, the languages and native libraries of stores are exploited

So far, it has been implemented on top of MongoDB, HBase and

Future work

* Augment the set of mobility-oriented operators (e.g., add trajectory operators)
* Integrate new operator types, e.g., support spatio-textual data
* Implement a mechanism for operating on two or more stores simultaneously

N. Koutroumanis @ MDM, Virtual, June 6-9, 2022

25

K

Thank you for your attention

More info:

o
our group: http://www.datastories.org/ °@
Track & Know
project Track & Know: https://trackandknowproject.eu/
project Spades: https://www.ds.unipi.gr/spades/ sjfﬁﬂzﬁﬁ fi%:m

project Chorologos: https://www.ds.unipi.gr/chorologos/

e-mail: koutroumanis@unipi.gr

i Chorologos

Hellenic Foundation for GENERAL SECRETARIAT FOR
Research & Innovation
RESEARGH AND TECHHOLOGY

http://www.datastories.org/
https://trackandknowproject.eu/
https://www.ds.unipi.gr/spades/
https://www.ds.unipi.gr/chorologos/

